精英家教网 > 高中数学 > 题目详情
5.如图,在三菱柱ABC-A1B1C1中,平面A1C1CA和平面B1C1CB均为正方形,B1C1⊥A1C1,M为CC1的中点,B1C1=2,点D在线段AC上运动(不含端点A、C).
(Ⅰ)若点P在棱A1B1上,试确定点P的位置,使得,MP⊥AC1,并求出此时点P的坐标;
(Ⅱ)探究:是否存在点D,使得二面角C1-BD-C的大小为60°.

分析 (Ⅰ)连结A1C,取A1C1的中点N,A1B1的中点P,连结MN,PN,推导出B1C1⊥A1C1,PN⊥AC1,由此能求出MP⊥AC1,此时P是A1B1中点.
(Ⅱ)以C1为原点,C1A1为x轴,C1C为y轴,C1B1为z轴,建立空间直角坐标系,利用向量法能求出存在点D($\sqrt{2}$,2,0),使得二面角C1-BD-C的大小为60°.

解答 解:(Ⅰ)当点P在棱A1B1中点位置时,MP⊥AC1,证明如下:
连结A1C,取A1C1的中点N,A1B1的中点P,连结MN,PN,
∵M为CC1的中点,∴MN∥A1C,PN∥B1C1
∵在三菱柱ABC-A1B1C1中,平面A1C1CA和平面B1C1CB均为正方形,B1C1⊥A1C1
∴A1C⊥AC1,B1C1⊥平面A1ACC1
∴MN⊥AC1,PN⊥AC1
∵MN∩PN=N,∴AC1⊥平面PMN,
∵MP?平面PMN,∴MP⊥AC1,此时P是A1B1中点.
(Ⅱ)以C1为原点,C1A1为x轴,C1C为y轴,C1B1为z轴,建立空间直角坐标系,
则C1(0,0,0),B(0,2,2),设D(t,2,0),0<t<2,
则$\overrightarrow{{C}_{1}B}$=(0,2,2),$\overrightarrow{{C}_{1}D}$=(t,2,0),
设平面C1BD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{C}_{1}B}=2y+2z=0}\\{\overrightarrow{n}•\overrightarrow{{C}_{1}D}=tx+2y=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(-$\frac{2}{t}$,1,-1),
平面BCD的法向量$\overrightarrow{m}$=(0,1,0),
∵二面角C1-BD-C的大小为60°,
∴cos60°=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{\frac{4}{{t}^{2}}+2}}$=$\frac{1}{2}$,解得t=$\sqrt{2}$,
∴存在点D($\sqrt{2}$,2,0),使得二面角C1-BD-C的大小为60°.

点评 本题考查满足结线垂直的点的位置的判断与求法,考查满足二面角为60°的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.曲线$\left\{\begin{array}{l}{x=3cosφ}\\{y=\sqrt{5}sinφ}\end{array}\right.$(φ为参数)的离心率为(  )
A.$\frac{2}{3}$B.$\frac{3}{5}$C.$\frac{3}{2}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3+3x2-9x;
(1)求f(x)的单调区间;
(2)若函数f(x)在区间[-4,c]上的最小值为-5,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x+$\frac{1}{x}$=4,求下列各式的值.
(1)x2+$\frac{1}{{x}^{2}}$;
(2)$\frac{{x}^{2}}{{x}^{4}+{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.百钱买百鸡问题:用100元钱买100只鸡,公鸡每只5元,母鸡每只3元,小鸡3只1元,问公鸡、母鸡、小鸡各买多少只?根据题写出算法及程序.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{a-2lnx}{x^2}$在点(1,f(1))处的切线与直线y=-4x+1平行.
(1)求实数a的值及f(x)的极值;
(2)若对任意x1,x2$∈(0,\frac{1}{e}]$,有$|\frac{{f({x_1})-f({x_2})}}{x_1^2-x_2^2}|>\frac{k}{x_1^2•x_2^2}$,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在长方体ABCD-A′B′C′D′中,AB=λAD=λAA′(λ>0),E,F分别是A′C′和AD的中点,且EF⊥平面A′BCD′.
(1)求λ的值;
(2)求二面角C-A′B-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数,α∈(0,$\frac{π}{2}$)),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.
(1)若直线l与曲线C有且仅有一个公共点M,求点M的直角坐标;
(2)若直线l与曲线C相交于A,B两点,线段AB的中点横坐标为$\frac{1}{2}$,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,圆C的方程为(x-2)2+(y-3)2=9,若过点M(0,3)的直线与圆C交于P,Q两点(其中点P在第二象限),且∠PMO=2∠PQO,则点Q的横坐标为1.

查看答案和解析>>

同步练习册答案