分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)通过讨论c的范围,求出函数的最小值,从而求出c的具体范围.
解答 解:(1)函数f(x)的定义域是R,
f′(x)=3x2+6x-9,
令f′(x)>0,解得:x>1或x<-3,
令f′(x)<0,解得:-3<x<1,
∴f(x)在(-∞,-3)递增,在(-3,1)递减,在(1,+∞)递增;
(2)由f(-4)=20结合(1)得:
c≥1时,函数f(x)在[-4,c]上的最小值是f(1)=-5,
-4<c<1时,函数f(x)在区间[-4,c]上的最小值大于-5,
故c的范围是[1,+∞).
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0] | B. | (-1,0) | C. | [0,+∞) | D. | [0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{13}{4}$ | B. | $\frac{7}{2}$ | C. | 4 | D. | $\frac{15}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|4x<2x+1} | B. | {(x,y)|y=x-1} | C. | {y=x-1} | D. | {y|y=log2(-x2+2x+1)} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com