6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{3}{2}+t}\\{y=\sqrt{3}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{2}{3}{m}^{2}}\\{y=2m}\end{array}\right.$£¨mΪ²ÎÊý£©£¬ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬ÇóÏß¶ÎABµÄ³¤£®

·ÖÎö °Ñ²ÎÊý·½³Ì·Ö±ð»¯ÎªÆÕͨ·½³Ì£¬ÁªÁ¢·½³ÌµÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð ½â£ºÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{3}{2}+t}\\{y=\sqrt{3}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯ÎªÆÕͨ·½³Ì£º2$\sqrt{3}x$-2y-3$\sqrt{3}$=0£®
ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{2}{3}{m}^{2}}\\{y=2m}\end{array}\right.$£¨mΪ²ÎÊý£©£¬»¯ÎªÆÕͨ·½³Ì£ºy2=6x£®
ÁªÁ¢$\left\{\begin{array}{l}{2\sqrt{3}x-2y-3\sqrt{3}=0}\\{{y}^{2}=6x}\end{array}\right.$£¬»¯Îª£º4x2-20x+9=0£®
¡àx1+x2=5£¬x1x2=$\frac{9}{4}$£®
¡à|AB|=$\sqrt{£¨1+3£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{4¡Á£¨25-4¡Á\frac{9}{4}£©}$=8£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢Ö±ÏßÓëÇúÏßÏཻÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=x3+3x2-9x£»
£¨1£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä[-4£¬c]ÉϵÄ×îСֵΪ-5£¬ÇócµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÈçͼËùʾ£¬ÔÚ³¤·½ÌåABCD-A¡äB¡äC¡äD¡äÖУ¬AB=¦ËAD=¦ËAA¡ä£¨¦Ë£¾0£©£¬E£¬F·Ö±ðÊÇA¡äC¡äºÍADµÄÖе㣬ÇÒEF¡ÍÆ½ÃæA¡äBCD¡ä£®
£¨1£©Çó¦ËµÄÖµ£»
£¨2£©Çó¶þÃæ½ÇC-A¡äB-EµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}}\right.$£¨tΪ²ÎÊý£¬¦Á¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£®
£¨1£©ÈôÖ±ÏßlÓëÇúÏßCÓÐÇÒ½öÓÐÒ»¸ö¹«¹²µãM£¬ÇóµãMµÄÖ±½Ç×ø±ê£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚA£¬BÁ½µã£¬Ïß¶ÎABµÄÖеãºá×ø±êΪ$\frac{1}{2}$£¬ÇóÖ±ÏßlµÄÆÕͨ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªa£¾0£¬b£¾0£¬º¯Êýf£¨x£©=|x-a|+|x+b|µÄ×îСֵΪ2£®
£¨¢ñ£©Çóa+bµÄÖµ£»
£¨¢ò£©Ö¤Ã÷£ºa2+a£¾2Óëb2+b£¾2²»¿ÉÄÜͬʱ³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãM£¨4£¬2£©ºÍN£¨-3£¬6£©£¬Ôò¡÷OMNµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®5$\sqrt{5}$B£®15C£®6$\sqrt{5}$D£®30

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¶¨ÒåÔÚRÉϵÄżº¯Êýg£¨x£©Âú×ãg£¨x£©+g£¨2-x£©=0£¬º¯Êýf£¨x£©=$\sqrt{1-{x^2}}$µÄͼÏóÊÇg£¨x£©µÄͼÏóµÄÒ»²¿·Ö£®Èô¹ØÓÚxµÄ·½³Ìg2£¨x£©=a£¨x+1£©2ÓÐ3¸ö²»Í¬µÄʵÊý¸ù£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨$\frac{1}{8}$£¬+¡Þ£©B£®£¨$\frac{1}{3}$£¬$\frac{{2\sqrt{2}}}{3}$£©C£®£¨$\frac{{\sqrt{2}}}{4}$£¬+¡Þ£©D£®£¨2$\sqrt{2}$£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²CµÄ·½³ÌΪ£¨x-2£©2+£¨y-3£©2=9£¬Èô¹ýµãM£¨0£¬3£©µÄÖ±ÏßÓëÔ²C½»ÓÚP£¬QÁ½µã£¨ÆäÖеãPÔÚµÚ¶þÏóÏÞ£©£¬ÇÒ¡ÏPMO=2¡ÏPQO£¬ÔòµãQµÄºá×ø±êΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÊÇij¼¸ºÎÌåµÄÈýÊÓͼºÍÖ±¹Ûͼ£¬ÆäÕýÊÓͼΪ¾ØÐΣ¬²àÊÓͼΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬¸©ÊÓͼΪֱ½ÇÌÝÐΣ¬µãPÔÚÀâBCÉÏ£¬ÇÒAP¡ÎÆ½ÃæCDE£®
£¨¢ñ£©ÇóµãPµ½Æ½ÃæCDEµÄ¾àÀ룻
£¨¢ò£©Çó¶þÃæ½ÇA-CD-EµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸