精英家教网 > 高中数学 > 题目详情
12.设a>1,a2x>a3,则x的取值范围是x>$\frac{3}{2}$.

分析 根据a>1时函数y=ax是单调增函数,得出关于x一次不等式,求出解集即可.

解答 解:当a>1时,函数y=ax是单调增函数,
又a2x>a3
所以2x>3,
解得x>$\frac{3}{2}$,
所以x的取值范围是x>$\frac{3}{2}$.
故答案为:x>$\frac{3}{2}$.

点评 本题考查了根据指数函数的单调性求不等式解集的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在极坐标系中曲线C:ρ=2cosθ上的点到(1,π)距离的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线f(x)=$\frac{ax}{{e}^{x}}$在x=0处的切线方程为y=x+b.
(1)求a,b的值;
(2)若对任意x∈($\frac{1}{2}$,$\frac{3}{2}$),f(x)<$\frac{1}{m+6x-3{x}^{2}}$恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{3}$x3-x2-8x+4.
(1)求f(x)的单调区间;
(2)当x∈[-1,5]时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=a+t\end{array}$(t为参数,a为常数),曲线C的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}$(α为参数,-$\frac{π}{2}$≤α≤$\frac{π}{2}$),以原点为极点,x轴的非负半轴为极轴建立极坐标系.
(1)写出直线l与曲线C的极坐标方程;
(2)若直线l与曲线C有且只有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一个直角三角形的两条直角边边长分别为a,b,设计一个算法,求三角形的面积,并画出相应的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,且△PAC是等边三角形,AC=2,AB⊥BC,且AB=BC.过点B的平面α与直线PC平行,且与平面PAC垂直,设α与AC交于点O,与PA交于点D.
(Ⅰ)在图中标出O、D的位置,并说明理由;
(Ⅱ)若直线PB与平面ABC所成的角等于$\frac{π}{3}$,求平面BDO与平面PBC所成二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在底面为梯形的四棱锥P-ABCD中,平面PAB⊥底面ABCD,AD∥BC,AD⊥CD,AP=PB,AD=CD=2,BC=4.
(1)求证:AC⊥PB;
(2)若二面角B-PA-D的大小为120°,求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AB为圆O的直径,P是AB延长线上一点,割线PCD交圆O于C,D两点,过点P作AP的垂线,交直线AC于点E,交直线AD于点F.
(1)证明:F、E、C、D四点共圆;
(2)若AP=10,BP=2,CP=3,求sin∠DPF的值.

查看答案和解析>>

同步练习册答案