精英家教网 > 高中数学 > 题目详情
17.函数f(x)=x3-12x在区间[-4,4]上的最小值是(  )
A.-9B.-16C.-12D.-11

分析 (1)先对函数f(x)求导数f'(x),然后根据导数f'(x)的零点得出导数大于零和导数小于零的区间,导数大于零的区间是函数的增区间,而导数小于零的区间是函数的减区间,从而得到极值与最大值、最小值.

解答 解:∵f'(x)=3x2-12=3(x-2)(x+2),
由f'(x)<0,得x∈(-2,2),∴x∈(-2,2)时,函数为减函数;
同理x∈(-∞,-2)或x∈(2,+∞)时,函数为增函数.
综上所述,函数的增区间为(-4,-2)、(2,4);减区间为(-2,2)
x=-2时,f(x)极大值=f(-2)=16,x=2时,f(x)极小值=f(2)=-16
f(x)max=f(x)极大值=f(-2)=16,f(x)min=f(x)极小值=f(2)=-16.
故选:B.

点评 本题着重考查了利用导数研究函数的单调性、利用导数求闭区间上函数的最值等等知识点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\\{\;}\end{array}\right.$(θ∈[-$\frac{π}{2}$,$\frac{π}{2}$]为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2ρ(cosθ-sinθ)=3.
(Ⅰ)求C1与C2交点的直角坐标;
(Ⅱ)求C1上任意一点P到C2距离d的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{{\begin{array}{l}{|{x+1}|,x≤0}\\{|{{{log}_{\frac{1}{2}}}x}|,x>0}\end{array}}$若方程f(x)=k有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则$\frac{{({x_1}+{x_2}){x_3}}}{2}$+$\frac{1}{{x_3^2{x_4}}}$的取值范围是(  )
A.[$\frac{3}{2}$,+∞)B.(-∞,0)C.(0,$\frac{3}{2}$]D.(0,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$,曲线C2的极坐标方程为ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(1)求曲线C2的直角坐标方程;
(2)求曲线C2的动点M到曲线C1的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=alnx+$\frac{1}{2}$ax2-2x在x∈(1,2)内存在单调递减区间,则实数a的取值范围是(  )
A.(-∞,1)B.(-∞,$\frac{4}{5}$)C.(0,1)D.(0,$\frac{4}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ-4cosθ=0,直线l过点M(0,4)且斜率为-1.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,写出直线l的标准参数方程;
(Ⅱ)若直线l与曲线C交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)的定义域为[-1,5],部分对应值如下表:
x-1045
f(x)1221
f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为5;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中真命题为②③(填写序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C1:$\frac{x^2}{4}$+y2=1,抛物线C2:y2=ax(a>0),点T为椭圆C1的右顶点,设椭圆C1与抛物线C2交于点A,B.
(1)求$\overrightarrow{TA}$•$\overrightarrow{TB}$的最小值,并求此时抛物线C2的方程;
(2)设点M是椭圆C1上异于A,B的任意一点,且直线MA,MB分别与x轴交于点P,Q,O为坐标原点,求证:|OP|•|OQ|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若0<x-$\frac{1}{x}$<1,则x的取值范围{x|$\frac{1-\sqrt{5}}{2}$<x<0,或 x>$\frac{1+\sqrt{5}}{2}$ }.

查看答案和解析>>

同步练习册答案