精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-2-t}\\{y=2-\sqrt{3}t}\end{array}\right.$(t为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+4ρsinθ=3,直线l与曲线C交于A,B两点.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)求线段AB的长.

分析 (I)曲线C的极坐标方程为ρ2cos2θ+4ρsinθ=3,即曲线C的极坐标方程为ρ2(cos2θ-sin2θ)+4ρsinθ=3,利用ρ2=x2+y2,y=ρsinθ,x=ρcosθ即可化为直角坐标方程.
(II)把直线l的参数方程变形为$\left\{\begin{array}{l}{x=-2-\frac{1}{2}m}\\{y=2-\frac{\sqrt{3}}{2}m}\end{array}\right.$,(m为参数)代入曲线C的方程可得:m2-4m-10=0,利用|AB|=|m1-m2|=$\sqrt{({m}_{1}+{m}_{2})^{2}-4{m}_{1}{m}_{2}}$即可得出.

解答 解:(I)曲线C的极坐标方程为ρ2cos2θ+4ρsinθ=3,即曲线C的极坐标方程为ρ2(cos2θ-sin2θ)+4ρsinθ=3,化为直角坐标方程:x2-y2+4y-3=0.
(II)把直线l的参数方程变形为$\left\{\begin{array}{l}{x=-2-\frac{1}{2}m}\\{y=2-\frac{\sqrt{3}}{2}m}\end{array}\right.$,(m为参数)代入曲线C的方程可得:m2-4m-10=0,
∴m1+m2=4,m1m2=-10.
∴|AB|=|m1-m2|=$\sqrt{({m}_{1}+{m}_{2})^{2}-4{m}_{1}{m}_{2}}$=$\sqrt{{4}^{2}-4×(-10)}$=2$\sqrt{14}$.

点评 本题考查了极坐标与直角坐标方程的互化、参数方程的应用、直线与曲线相交弦长公式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=4cosxsin(x-$\frac{π}{6}$),x∈R.
(1)求f(x)的最小正周期;
(2)若方程f(x)=2m-1在[0,$\frac{π}{2}$]上有两个不等的实根,求实数m的取值范围及两根之和;
(3)在△ABC中,BC=4,sinC=2sinB,若f(x)的最大值为f(A),求△ABC内切圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M、N分别在AD1、BC上移动,始终保持MN∥平面DCC1D1,设BN=y,MN=x,则函数y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义在R上的函数f(x),g(x)满足:对于任意的x,都有f(-x)+f(x)=0,g(x)=g(|x|).当x<0时,f′(x)<0,g′(x)>0,则当x>0时,有(  )
A.f'(x)>0,g′(x)>0B.f′(x)<0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)>0,g′(x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2-(a+2)x+lnx.
(Ⅰ)当a=-2时,求函数f(x)极值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆O:x2+y2=4,将圆O上每一点的横坐标保持不变,纵坐标变为原来的$\frac{1}{2}$,得到曲线C.
(I)写出曲线C的参数方程;
(II)设直线l:x-2y+2=0与曲线C相交于A,B两点,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线m过线段AB的中点,且倾斜角是直线l的倾斜角的2倍,求直线m的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系中,曲线C1的参数方程$\left\{\begin{array}{l}x=3cosφ\\ y=2sinφ\end{array}$(φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线θ=$\frac{π}{3}$与曲线C2交于点D(4,$\frac{π}{3}}$).
(1)求曲线C1的普通方程及C2的直角坐标方程;
(2)在极坐标系中,A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}}$)是曲线C1上的两点,求$\frac{1}{ρ_1^2}+\frac{1}{ρ_2^2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2,且与椭圆x2+$\frac{y^2}{2}$=1有相同离心率. 
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C交于不同的A,B两点,且椭圆C上存在点Q,满足$\overrightarrow{OA}+\overrightarrow{OB}=λ\overrightarrow{OQ}$(O为坐标原点),求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线x=m(m>1)与函数f(x)=logax,g(x)=logbx的图象及x轴分别交于A,B,C三点.若|AB|=2|BC,则|(  )
A.b=a2或a=b2B.a=b-1或a=b3C.a=b-1或b=a3D.a=b3

查看答案和解析>>

同步练习册答案