精英家教网 > 高中数学 > 题目详情
16.已知圆O:x2+y2=4,将圆O上每一点的横坐标保持不变,纵坐标变为原来的$\frac{1}{2}$,得到曲线C.
(I)写出曲线C的参数方程;
(II)设直线l:x-2y+2=0与曲线C相交于A,B两点,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线m过线段AB的中点,且倾斜角是直线l的倾斜角的2倍,求直线m的极坐标方程.

分析 (I)设曲线C上任意一点P(x,y),则点Q(x,2y)在圆O上,代入⊙O的方程即可得出直角坐标方程,进而得到参数方程.
(II)直线方程与椭圆方程联立解出交点坐标,利用中点坐标公式即可得出线段AB的中点N的坐标,设直线l的倾斜角为α,则$tanα=\frac{1}{2}$,利用倍角公式可得tan2α.利用点斜式可得直线m的方程,进而得出极坐标方程.

解答 解:(I)设曲线C上任意一点P(x,y),则点Q(x,2y)在圆O上,
∴${x^2}+{({2y})^2}=4,即\frac{x^2}{4}+{y^2}=1$,
∴曲线C的参数方程是$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}({θ为参数})}\right.$.
(II)联立$\left\{\begin{array}{l}{x-2y+2=0}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$,或$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$.
得A(-2,0),B(0,1),∴线段AB的中点N的坐标$(-1,\frac{1}{2})$,
设直线l的倾斜角为α,则$tanα=\frac{1}{2}$,$tan2α=\frac{2tanα}{{1-{{tan}^2}α}}=\frac{{2×\frac{1}{2}}}{{1-\frac{1}{4}}}=\frac{4}{3}$,
∴直线m的方程为:y=$\frac{4}{3}$(x+1)+$\frac{1}{2}$,即8x-6y+11=0,
∴直线m的极坐标方程为:8ρcosθ-6ρsinθ+11=0.

点评 本题考查了坐标变换、椭圆的参数方程、直线与圆相交问题、中点坐标公式、倍角公式、点斜式、直角坐标方程化为极坐标方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=sinx-$\sqrt{3}$cosx(x∈[-π,0])的递增区间是(  )
A.[-π,-$\frac{5π}{6}$]B.[-$\frac{5π}{6}$,-$\frac{π}{6}$]C.[-$\frac{π}{3}$,0]D.[-$\frac{π}{6}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,两条曲线的极坐标方程分别为ρ=1,ρ=2sin($\frac{π}{6}$-θ),它们相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$ax2-lnx-2.
(1)当a=1时,求曲线f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-2-t}\\{y=2-\sqrt{3}t}\end{array}\right.$(t为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+4ρsinθ=3,直线l与曲线C交于A,B两点.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{2x-2,x>1}\end{array}\right.$,若函数g(x)=f(x)-m有三个零点x1,x2,x3,求x1x2x3的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.等比数列1,-2,4,…,-512的各项和为-341.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数y=ex-ln3,则$\frac{dy}{dx}$=(  )
A.exB.ex+$\frac{1}{3}$C.$\frac{1}{3}$D.ex-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-2alnx.
(1)求f(x)的极值;
(2)当a>0时,函数g(x)=f(x)-2ax有唯一零点,试求a的值.

查看答案和解析>>

同步练习册答案