分析 (1)求导数,利用导数的几何意义求曲线f(x)在点(1,f(1))处的切线方程;
(2)先求出函数的导数,通过讨论a的取值范围求出函数的单调区间.
解答 解:(1)当a=1时,f(x)=$\frac{1}{2}$x2-lnx-2,f′(x)=x-$\frac{1}{x}$,
∴f′(1)=0,f(1)=-$\frac{3}{2}$,
∴曲线f(x)在点(1,f(1))处的切线方程为y=-$\frac{3}{2}$;
(2)∵f′(x)=$\frac{a{x}^{2}-1}{x}$(x>0),
a≤0时,f′(x)<0,f(x)的单调递减区间为:(0,+∞),
a>0时,f(x)在(0,$\frac{\sqrt{a}}{a}$)递减,在($\frac{\sqrt{a}}{a}$,+∞)递增.
点评 本题考查利用导数研究切线方程、函数的单调性,考查学生分析解决问题的能力,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f'(x)>0,g′(x)>0 | B. | f′(x)<0,g′(x)<0 | C. | f′(x)<0,g′(x)>0 | D. | f′(x)>0,g′(x)<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 中心 | B. | 重心 | C. | 外心 | D. | 垂线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com