16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÍÖÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÑÖªÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÉäÏßlµÄ¼«×ø±ê·½³ÌΪ¦È=¦Á£¨¦Ñ¡Ý0£©£¨×¢£º±¾ÌâÏÞ¶¨£º¦Ñ¡Ý0£¬¦È¡Ê[0£¬2¦Ð£©£©
£¨1£©°ÑÍÖÔ²CµÄ²ÎÊý·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÉèÉäÏßlÓëÍÖÔ²CÏཻÓÚµãA£¬È»ºóÔÙ°ÑÉäÏßlÄæÊ±Õë90¡ã£¬µÃµ½ÉäÏßOBÓëÍÖÔ²CÏཻÓÚµãB£¬ÊÔÈ·¶¨$\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}$ÊÇ·ñΪ¶¨Öµ£¬ÈôΪ¶¨ÖµÇó³ö´Ë¶¨Öµ£¬Èô²»Îª¶¨ÖµÇë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÍÖÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÈý½Çº¯Êý»ù±¾¹ØÏµÊ½¿ÉµÃ£ºÍÖÔ²CµÄÆÕͨ·½³Ì£®°Ñ $\left\{{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}}\right.$´úÈëÖ±½Ç×ø±ê·½³Ì¿ÉµÃ¼«×ø±ê·½³Ì£®
£¨2£©ÓÉ£¨1£©µÃÍÖÔ²µÄ¼«×ø±ê·½³Ì¿É»¯Îª$¦Ñ=\frac{{\sqrt{2}}}{{\sqrt{1+{{sin}^2}¦È}}}$£®ÓÉÒÑÖª¿ÉµÃ£ºÔÚ¼«×ø±êÏ£¬¿ÉÉè$A£¨{{¦Ñ_1}£¬¦Á}£©£¬B£¨{{¦Ñ_2}£¬¦Á+\frac{¦Ð}{2}}£©$£¬·Ö±ð´úÈë$¦Ñ=\frac{{\sqrt{2}}}{{\sqrt{1+{{sin}^2}¦È}}}$ÖУº¿ÉµÃ$\frac{1}{{{¦Ñ_1}^2}}=\frac{{1+{{sin}^2}¦Á}}{2}$£¬$\frac{1}{{{¦Ñ_2}^2}}=\frac{{1+{{cos}^2}¦Á}}{2}$£®¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÍÖÔ²CµÄÆÕͨ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®
°Ñ $\left\{{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}}\right.$´úÈëÖ±½Ç×ø±ê·½³Ì¿ÉµÃ£º$\frac{{{¦Ñ^2}{{cos}^2}¦È}}{2}+{¦Ñ^2}{sin^2}¦È=1$£¬»¯Îª£º¦Ñ2+¦Ñ2sin2¦È=2£®
£¨2£©ÓÉ£¨1£©µÃÍÖÔ²µÄ¼«×ø±ê·½³Ì¿É»¯Îª$¦Ñ=\frac{{\sqrt{2}}}{{\sqrt{1+{{sin}^2}¦È}}}$£¬
ÓÉÒÑÖª¿ÉµÃ£ºÔÚ¼«×ø±êÏ£¬¿ÉÉè$A£¨{{¦Ñ_1}£¬¦Á}£©£¬B£¨{{¦Ñ_2}£¬¦Á+\frac{¦Ð}{2}}£©$£¬
·Ö±ð´úÈë$¦Ñ=\frac{{\sqrt{2}}}{{\sqrt{1+{{sin}^2}¦È}}}$ÖУº
ÓÐ${¦Ñ_1}=\frac{{\sqrt{2}}}{{\sqrt{1+{{sin}^2}¦Á}}}$£¬${¦Ñ_2}=\frac{{\sqrt{2}}}{{\sqrt{1+{{cos}^2}¦Á}}}$£¬
¡à$\frac{1}{{{¦Ñ_1}^2}}=\frac{{1+{{sin}^2}¦Á}}{2}$£¬$\frac{1}{{{¦Ñ_2}^2}}=\frac{{1+{{cos}^2}¦Á}}{2}$£®
Ôò$\frac{1}{{{¦Ñ_1}^2}}+\frac{1}{{{¦Ñ_2}^2}}=\frac{3}{2}$¼´$\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}=\frac{3}{2}$£®
¹Ê$\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}$Ϊ¶¨Öµ$\frac{3}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±êµÄÓ¦Óá¢Èý½Çº¯ÊýµÄ»ù±¾¹ØÏµÊ½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{|lnx|£¬x£¾0}\\{x+2£¬x¡Ü0}\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©-af£¨x£©+b=0ÓÐ6¸ö²»Í¬µÄ½â£¬ÔòaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨0£¬3£©B£®£¨0£¬4£©C£®£¨0£¬4]D£®[1£¬4]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{x}$-alnx£¨a¡ÊR£©£®
£¨¢ñ£©Èôh£¨x£©=f£¨x£©-2x£¬µ±a=-3ʱ£¬Çóh£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÓÐΨһµÄÁãµã£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®¶ÔÈÎÒâx£¬y¡ÊR£¬ºãÓÐ$sinx+cosy=2sin£¨\frac{x-y}{2}+\frac{¦Ð}{4}£©cos£¨\frac{x+y}{2}-\frac{¦Ð}{4}£©$£¬Ôò$sin\frac{7¦Ð}{24}cos\frac{13¦Ð}{24}$µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{{1+\sqrt{2}}}{4}$B£®$\frac{{1-\sqrt{2}}}{4}$C£®$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D£®$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÎªÁËÅжÏѧÉú½â¼¸ºÎÌâºÍ´úÊýÌâÄÜÁ¦ÊÇ·ñÓëÐÔ±ðÓйأ¬ÏßËæ»ú³éÈ¡50ÃûѧÉú£¬µÃµ½ÈçÏÂ2¡Á2ÁªÁÐ±í£º£¨µ¥Î»£ºÈË£©
¼¸ºÎÌâ´úÊýÌâ×ܼÆ
ÄÐͬѧ22830
Ůͬѧ81220
×ܼÆ302050
£¨1£©ÄÜ·ñ¾Ý´ËÅжÏÓÐ97.5%µÄ°ÑÎÕÈÏΪ½â¼¸ºÎÌâºÍ´úÊýÌâÄÜÁ¦ÓëÐÔ±ðÓйأ¿
£¨2£©ÏÖ´ÓÑ¡Ôñ×ö¼¸ºÎÌâµÄ8ÃûÅ®ÉúÖÐÈÎÒâ³éÈ¡Á½È˶ÔËýÃǵĴðÌâÇé¿ö½øÐÐÈ«³ÌÑо¿£¬¼Ç¼×¡¢ÒÒÁ½Å®Éú±»³éµ½µÄÈËÊýΪ X£¬Çó XµÄ·Ö²¼Áм°ÊýѧÆÚÍûE£¨X£©£®
£¨3£©¾­¹ý¶à´Î²âÊԺ󣬼×ÿ´Î½â´ðÒ»µÀ¼¸ºÎÌâËùÓõÄʱ¼äÔÚ5¡«7·ÖÖÓ£¬ÒÒÿ´Î½â´ðÒ»µÀ¼¸ºÎÌâËùÓõÄʱ¼äÔÚ6¡«8·ÖÖÓ£¬Ïּס¢ÒÒ¸÷½âͬһµÀ¼¸ºÎÌ⣬ÇóÒұȼ×ÏȽâ´ðÍêµÄ¸ÅÂÊ£®
¸½±í¼°¹«Ê½
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
P£¨k2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1+sin2x£¬sinx-cosx£©£¬$\overrightarrow{b}$=£¨1£¬sinx+cosx£©£¬º¯Êýf£¨x£©=$\overrightarrow{a}•\overrightarrow{b}$
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©Çóº¯Êýf£¨x£©µÄ×î´óÖµ¼°È¡µÃ×î´óÖµÏàÓ¦µÄxµÄ¼¯ºÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èô¹ØÓÚxµÄ·½³Ìsinx+$\sqrt{3}$cosx+a=0ÔÚ£¨0£¬2¦Ð£©ÄÚÓÐÁ½¸ö²»Í¬µÄʵÊý¸ù¦Á£¬¦Â£¬ÇóʵÊýaµÄȡֵ·¶Î§¼°ÏàÓ¦µÄ¦Á+¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª¦ÈΪµÚ¶þÏóÏ޽ǣ¬Èôtan£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{1}{2}$£¬Ôòsin¦È-cos¦ÈµÄֵΪ£¨¡¡¡¡£©
A£®$-\frac{{\sqrt{10}}}{5}$B£®$\frac{{\sqrt{10}}}{5}$C£®$\frac{{2\sqrt{10}}}{5}$D£®$-\frac{{2\sqrt{10}}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=ax2+ln£¨x+1£©
£¨1£©µ±a=-$\frac{1}{4}$ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä
£¨2£©µ±x¡Ê[0£¬+¡Þ£©Ê±£¬º¯Êýy=f£¨x£©Í¼ÏóÉϵĵ㶼ÔÚ$\left\{\begin{array}{l}{x¡Ý0}\\{y-x¡Ü0}\end{array}\right.$Ëù±íʾµÄÆ½ÃæÇøÓòÄÚ£¬ÇóʵÊýaµÄȡֵ·¶Î§
£¨3£©ÇóÖ¤£º£¨1+$\frac{2}{2¡Á3}$£©£¨1+$\frac{4}{3¡Á5}$£©£¨1+$\frac{8}{5¡Á9}$£©¡­[1+$\frac{{2}^{n}}{£¨{2}^{n-1}+1£©£¨{2}^{n}+1£©}$]£¼e£¨ÆäÖÐn¡ÊN+£¬eÊÇ×ÔÈ»ÊýµÄµ×Êý£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸