·ÖÎö £¨1£©ÍÖÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÈý½Çº¯Êý»ù±¾¹ØÏµÊ½¿ÉµÃ£ºÍÖÔ²CµÄÆÕͨ·½³Ì£®°Ñ $\left\{{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}}\right.$´úÈëÖ±½Ç×ø±ê·½³Ì¿ÉµÃ¼«×ø±ê·½³Ì£®
£¨2£©ÓÉ£¨1£©µÃÍÖÔ²µÄ¼«×ø±ê·½³Ì¿É»¯Îª$¦Ñ=\frac{{\sqrt{2}}}{{\sqrt{1+{{sin}^2}¦È}}}$£®ÓÉÒÑÖª¿ÉµÃ£ºÔÚ¼«×ø±êÏ£¬¿ÉÉè$A£¨{{¦Ñ_1}£¬¦Á}£©£¬B£¨{{¦Ñ_2}£¬¦Á+\frac{¦Ð}{2}}£©$£¬·Ö±ð´úÈë$¦Ñ=\frac{{\sqrt{2}}}{{\sqrt{1+{{sin}^2}¦È}}}$ÖУº¿ÉµÃ$\frac{1}{{{¦Ñ_1}^2}}=\frac{{1+{{sin}^2}¦Á}}{2}$£¬$\frac{1}{{{¦Ñ_2}^2}}=\frac{{1+{{cos}^2}¦Á}}{2}$£®¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÍÖÔ²CµÄÆÕͨ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®
°Ñ $\left\{{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}}\right.$´úÈëÖ±½Ç×ø±ê·½³Ì¿ÉµÃ£º$\frac{{{¦Ñ^2}{{cos}^2}¦È}}{2}+{¦Ñ^2}{sin^2}¦È=1$£¬»¯Îª£º¦Ñ2+¦Ñ2sin2¦È=2£®
£¨2£©ÓÉ£¨1£©µÃÍÖÔ²µÄ¼«×ø±ê·½³Ì¿É»¯Îª$¦Ñ=\frac{{\sqrt{2}}}{{\sqrt{1+{{sin}^2}¦È}}}$£¬
ÓÉÒÑÖª¿ÉµÃ£ºÔÚ¼«×ø±êÏ£¬¿ÉÉè$A£¨{{¦Ñ_1}£¬¦Á}£©£¬B£¨{{¦Ñ_2}£¬¦Á+\frac{¦Ð}{2}}£©$£¬
·Ö±ð´úÈë$¦Ñ=\frac{{\sqrt{2}}}{{\sqrt{1+{{sin}^2}¦È}}}$ÖУº
ÓÐ${¦Ñ_1}=\frac{{\sqrt{2}}}{{\sqrt{1+{{sin}^2}¦Á}}}$£¬${¦Ñ_2}=\frac{{\sqrt{2}}}{{\sqrt{1+{{cos}^2}¦Á}}}$£¬
¡à$\frac{1}{{{¦Ñ_1}^2}}=\frac{{1+{{sin}^2}¦Á}}{2}$£¬$\frac{1}{{{¦Ñ_2}^2}}=\frac{{1+{{cos}^2}¦Á}}{2}$£®
Ôò$\frac{1}{{{¦Ñ_1}^2}}+\frac{1}{{{¦Ñ_2}^2}}=\frac{3}{2}$¼´$\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}=\frac{3}{2}$£®
¹Ê$\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}$Ϊ¶¨Öµ$\frac{3}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±êµÄÓ¦Óá¢Èý½Çº¯ÊýµÄ»ù±¾¹ØÏµÊ½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨0£¬3£© | B£® | £¨0£¬4£© | C£® | £¨0£¬4] | D£® | [1£¬4] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{{1+\sqrt{2}}}{4}$ | B£® | $\frac{{1-\sqrt{2}}}{4}$ | C£® | $\frac{{\sqrt{3}+\sqrt{2}}}{4}$ | D£® | $\frac{{\sqrt{3}-\sqrt{2}}}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ¼¸ºÎÌâ | ´úÊýÌâ | ×Ü¼Æ | |
| ÄÐͬѧ | 22 | 8 | 30 |
| Ůͬѧ | 8 | 12 | 20 |
| ×Ü¼Æ | 30 | 20 | 50 |
| P£¨k2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $-\frac{{\sqrt{10}}}{5}$ | B£® | $\frac{{\sqrt{10}}}{5}$ | C£® | $\frac{{2\sqrt{10}}}{5}$ | D£® | $-\frac{{2\sqrt{10}}}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com