精英家教网 > 高中数学 > 题目详情
14.抛物线C:y2=4x的焦点为F,准线为l,P为抛物线C上一点,且P在第一象限,PM⊥l交l于点M,线段MF与抛物线C交于点N,若$\frac{|MN|}{|NF|}$=$\sqrt{5}$,则PF的斜率为$\frac{4}{3}$.

分析 过N作l的垂线,垂足为Q,则|NF|=|NQ|,|PF|=|PM|,于是∠PFM=∠PMF=∠MFO=∠MNQ,$\frac{|MN|}{|NF|}$=$\sqrt{5}$,则cos∠MNQ,利用二倍角公式求出tan∠MFO,然后求出P的坐标,即可得到直线的斜率.

解答 解:抛物线C:y2=4x的焦点为F(1,0),
过N作l的垂线,垂足为Q,则|NF|=|NQ|,
$\frac{|MN|}{|NF|}$=$\sqrt{5}$,则$\frac{|MN|}{|QN|}$=$\sqrt{5}$,∴cos∠MNQ=$\frac{\sqrt{5}}{5}$.
∴cos∠MFO=$\frac{\sqrt{5}}{5}$.tan∠MFO=2,
∴M(-1,4),∴P(4,4).
∴${K}_{PF}=\frac{4-0}{4-1}$=$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题考查了抛物线的性质,三角函数的恒等变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知R上的可导函数f(x)的图象如图所示,两个极值点分别为-1和1,若f′(x)为函数f(x)的导函数,则不等式(x2-2x-3)f′(x)>0的解集为(  )
A.(-∞,-2)∪(1,+∞)B.(-∞,-1)∪(-1,1)∪(3,+∞)C.(-∞,-1)∪(-1,0)∪(2,+∞)D.(-∞,-2)∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.关于x的方程$\frac{a}{x+1}$=1的解是负数,则a的取值范围为a<1且a≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正整数对按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2)(4,1),…,则第160个数对是(7,12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数f(x)=sinax-cosax(a>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次成等差数列,且公差为π.
(1)求函数y=f(x)的解析式;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,若$f(\frac{B}{2})=\sqrt{2}$,且a、b、c成等比数列,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,AP为圆O的切线,切点为A,过P作过圆心O的割线交圆于B,C两点,AH⊥BC于H.求证:PA•AH=PC•HB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin($\frac{π}{4}$+θ)=2$\sqrt{2}$
(1)将曲线C上各点的纵坐标伸长为原来的两倍,得到曲线C1,写出曲线C1的极坐标方程.
(2)若射线θ=$\frac{π}{6}$与l的交点分别为A,射线θ=-$\frac{π}{6}$与l的交点分别为B,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x3-2x2+ax+3在[1,2]上单调递增,则实数a的取值范围为(  )
A.a>-4B.a≥-4C.a>1D.a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆E过点A(1,-1),B(-1,1),且圆心E在直线l:x+y-2=0上,直线l′与直线l关于原点对称,过直线l′上点P向圆E引两条切线PM,PN,切点分别为M,N.
(Ⅰ)求圆E的方程;
(Ⅱ)求证:直线MN恒过一个定点.

查看答案和解析>>

同步练习册答案