精英家教网 > 高中数学 > 题目详情
19.如图,AP为圆O的切线,切点为A,过P作过圆心O的割线交圆于B,C两点,AH⊥BC于H.求证:PA•AH=PC•HB.

分析 连AC,AB,利用射影定理可得AH2=CH•HB,即$\frac{AH}{CH}=\frac{HB}{AH}$,再证明$\frac{PC}{CH}=\frac{PA}{AH}$,即$\frac{AH}{CH}=\frac{PA}{PC}$,即可得出结论.

解答 证明:连AC,AB.因BC为圆O的直径,故AC⊥AB.
又AH⊥PB,故AH2=CH•HB,即$\frac{AH}{CH}=\frac{HB}{AH}$.…5
因PA为圆O的切线,故∠PAC=∠B.
在Rt△ABC中,∠B+∠ACB=90°.
在Rt△ACH中,∠CAH+∠ACB=90°.
所以,∠HAC=∠B.
所以,∠PAC=∠CAH,
所以,$\frac{PC}{CH}=\frac{PA}{AH}$,即$\frac{AH}{CH}=\frac{PA}{PC}$.
所以,$\frac{PA}{PC}=\frac{HB}{AH}$,即PA•AH=PC•HB.…10分.

点评 本题考查与圆有关的比例线段,考查射影定理,考查学生分析解决问题的能力,难度中等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}$ax2+4x-lnx.
(1)当a=-3时,求f(x)的单调区间;
(2)当a≠0时,若f(x)是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(cosx,-sinx).
(1)若函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$+1,求函数f(x)的周期和最值;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,且x∈[$\frac{π}{6}$,$\frac{2π}{3}$],求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{x}$-alnx(a∈R).
(Ⅰ)若h(x)=f(x)-2x,当a=-3时,求h(x)的单调递减区间;
(Ⅱ)若函数f(x)有唯一的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.抛物线C:y2=4x的焦点为F,准线为l,P为抛物线C上一点,且P在第一象限,PM⊥l交l于点M,线段MF与抛物线C交于点N,若$\frac{|MN|}{|NF|}$=$\sqrt{5}$,则PF的斜率为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对任意x,y∈R,恒有$sinx+cosy=2sin(\frac{x-y}{2}+\frac{π}{4})cos(\frac{x+y}{2}-\frac{π}{4})$,则$sin\frac{7π}{24}cos\frac{13π}{24}$等于(  )
A.$\frac{{1+\sqrt{2}}}{4}$B.$\frac{{1-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了判断学生解几何题和代数题能力是否与性别有关,线随机抽取50名学生,得到如下2×2联列表:(单位:人)
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否据此判断有97.5%的把握认为解几何题和代数题能力与性别有关?
(2)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望E(X).
(3)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
附表及公式
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若关于x的方程sinx+$\sqrt{3}$cosx+a=0在(0,2π)内有两个不同的实数根α,β,求实数a的取值范围及相应的α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解方程组:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}+x+y=18}\\{{x}^{2}+xy+{y}^{2}=19}\end{array}\right.$.

查看答案和解析>>

同步练习册答案