精英家教网 > 高中数学 > 题目详情
已知数列{an}为递增的等比数列,且a3、a8分别是方程x2-66x+128=0的两根.
(1)求a5•a6的值;
(2)求数列{an}的通项公式;
(3)以数列{an}中的偶数项作为一个新的数列{bn},求数列{bn}的通项公式,并求前n项和Sn
∵数列{an}为递增的等比数列,且a3、a8分别是方程x2-66x+128=0的两根
∴a3•a8=128,a3+a8=66
∴a3=2,a8=64
(1)∵5+6=3+8
∴a5•a6=a3•a8=128,
(2)∵a3=2,a8=64
∴q=2
∴an=2n-2
(3)由(2)的结论数列{an}中的偶数项作为一个新的数列{bn},
则数列{bn}是一个以1为首项,以4为公比的等比数列
则bn=4n-1
Sn=
1-4n
1-4
=
1
3
4n-
1
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足递推关系式:an=
4an-1-2
an-1+1
(n≥2,n∈N),首项为a1

(1)若a1>a2,求a1的取值范围;
(2)记bn=
an-2
an-1
(n∈N*),1<a1<2,求证:数列{bn}
是等比数列;
(3)若an>an+1(n∈N*)恒成立,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在△ABC中,角A、B、C对应的边分别为a、b、c,且bcosC+ccosB=3acosB,
(Ⅰ)求cosB的值;
(Ⅱ)若
BA
BC
=2
b=2
2
,求a和c的值.
(2)已知数列{an}满足递推关系式an=2an-1+1(n≥2),其中a4=15.求数列{an}的通项公式和数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)已知数列{an}的递推公式为
an=3an-1-2n+3,(n≥2,n∈N*)
a1=2

(1)令bn=an-n,求证:数列{bn}为等比数列;
(2)求数列{an}的前 n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)已知数列{an}满足递推关系式:an+2an-an+12=tn(t-1),(n∈N*),且a1=1,a2=t.(t为常数,且t>1)
(1)求a3
(2)求证:{an}满足关系式an+2-2tan+1+tan=0,(n∈N*
(3)求证:an+1>an≥1(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的递推公式an=
n,n为奇数
a
n
2
,n为偶数
(n∈N*)
,则a24+a25=
 
;数列{an}中第8个5是该数列的第
 
  项.

查看答案和解析>>

同步练习册答案