精英家教网 > 高中数学 > 题目详情
过椭圆
x2
25
+
y2
16
=1的中心任作一直线交椭圆于P、Q两点,F是椭圆的一个焦点,则△PQF周长的最小值是(  )
A、14B、16C、18D、20
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由题意画出图形,然后利用椭圆的对称性把△PFQ的周长转化为椭圆上的点到两交点的距离及过原点的线段的长度问题,则答案可求.
解答: 解:如图,

由椭圆的定义知|PF|+|PF1|=2a
由椭圆的对称性知|QF|=|PF1|,
∴有|PF|+|QF|=2a,而|PQ|的最小值是2b,
x2
25
+
y2
16
=1,
∴a=5,b=4,
∴△PFQ的周长的最小值为2a+2b=2(a+b)=18
故选:C.
点评:本题考查了椭圆的简单几何性质,考查了椭圆定义得应用,体现了数学转化思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

截止2012年年底,已知某市人口数为80万,若今后能将人口年平均增长率控制在1%,经过x年以后此市人口数为y(万).
(1)求y与x的函数关系y=f(x);
(2)求函数y=f(x)的定义域;
(3)判断函数f(x)是增函数还是减函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的中心在原点,左焦点为(-
15
,0)
,且经过点M(4,1).
(1)求椭圆E的方程;
(2)若斜率为1的直线l(不过点M)交椭圆E于不同的两点A,B,求证:直线MA、MB与x轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,0),B(3,1).
①动点M在曲线y2=8x上移动时,求|MA|+|MB|的最小值;
②动点M在曲线
x2
16
+
y2
12
=1上移动时,求2|MA|+|MB|的最小值;
③动点M在曲线
x2
3
-y2=1上移动时,求|
3
2
MA|+|MB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立.
(1)求f(0)的值,并证明函数f(x)为奇函数;
(2)求证f(x)在R上为减函数;
(3)若f(1)=-2且关于x的不等式f(x2-x+k)<4恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:A(2,0),B(-2,-4),P在x-2y+8=0上
(1)当|PA|+|PB|最小时,求 P点坐标;
(2)当|PB|-|PA|最大时,求 P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的标准方程为
x2
2m
-
y2
m
=1(m<0),则双曲线的离心率(  )
A、
3
B、
6
2
C、
3
6
2
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx-1与双曲线x2-y2=1没有公共点,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为调查某中学学生平均每人每天参加体育锻炼时间X(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②10~20分钟;③20~30分钟;④30分钟以上.有2000名中学生参加了此项活动.下表是此次调查中的频数分布表.国家规定中学生每天参加体育锻炼时间达到30分钟以上者,才能保持良好健康的身体发展,则平均每天保持良好健康的身体发展的学生的频率是(  )
组距[0,10)[10,20)[20,30)[30,+)
频数400600800200
A、0.1B、0.2
C、0.3D、0.4

查看答案和解析>>

同步练习册答案