精英家教网 > 高中数学 > 题目详情
若抛物线y2=-2px(p>0)的焦点与双曲线
x23
-y2=1
的左焦点重合,则p的值
4
4
分析:先求双曲线的左焦点,再利用抛物线y2=-2px(p>0)的焦点与双曲线
x2
3
-y2=1
的左焦点重合,可求p的值.
解答:解:双曲线
x2
3
-y2=1
的左焦点为(-2,0)
∵抛物线y2=-2px(p>0)的焦点与双曲线
x2
3
-y2=1
的左焦点重合,
p
2
=2

∴p=4
故答案为:4
点评:本题考查双曲线的几何性质,考查抛物线的标准方程,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)过圆锥曲线焦点F的直线被曲线截得的弦称为焦点弦,若抛物线y2=2px(p>0)的焦点将焦点弦分成长为m,n的两段,则有结论
1
m
+
1
n
=
2
p
.借助获得这一结论的思想方法可以得到:若椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的一个焦点将焦点弦分成长为m,n的两段,则
1
m
+
1
n
=
2a
b2
2a
b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB是抛物线y2=2Px的任意一条焦点弦,且A(x1,y1),B(x2,y2).
(1)求证y1y2=-p2,x1x2=
p2
4

(2)若弦AB被焦点分成长为m,n的两部分,求证:
1
m
+
1
n
=
2
p

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理)过圆锥曲线焦点F的直线被曲线截得的弦称为焦点弦,若抛物线y2=2px(p>0)的焦点将焦点弦分成长为m,n的两段,则有结论
1
m
+
1
n
=
2
p
.借助获得这一结论的思想方法可以得到:若椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的一个焦点将焦点弦分成长为m,n的两段,则
1
m
+
1
n
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理)过圆锥曲线焦点F的直线被曲线截得的弦称为焦点弦,若抛物线y2=2px(p>0)的焦点将焦点弦分成长为m,n的两段,则有结论
1
m
+
1
n
=
2
p
.借助获得这一结论的思想方法可以得到:若椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的一个焦点将焦点弦分成长为m,n的两段,则
1
m
+
1
n
=______.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设抛物线y2=2p(x+)(p>0)的准线和焦点分别是双曲线的右准线和右焦点,直线y=kx与抛物线及双曲线在第一象限分别交于点A、B,且A为线段OB的中点(O为坐标原点).

(Ⅰ)当k=时,求双曲线渐近线的斜率;

(Ⅱ)设抛物线的顶点为M,抛物线与直线y=kx的另一交点为C,是否存在实数k,使得△ACM的面积等于直线MA、MC的斜率的乘积的绝对值?若存在,求出k值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案