精英家教网 > 高中数学 > 题目详情
已知数列{an}是首项为32,公差为整数的等差数列,且前6项为正,从第7项起为负.在Sn>0时,则n的最大值为
 
分析:由题意结合等差数列的通项公式可得公差d的值,进而可得其前n项和,令其>0解不等式可得n的范围,可得最大值.
解答:解:∵数列{an}首项为32,前6项均为正,从第7项开始为负,
∴a6=a1+5d=32+5d>0,a7=a1+6d=32+6d<0,
解得:-
32
5
<d<-
32
6
,又d∈Z,∴d=-6
∴Sn=32n+
n(n-1)
2
×(-6)
=-3n2+35n
令-3n2+35n>0,解不等式可得0<n<
35
3

又n∈N*,∴n的最大值为11
故答案为:11.
点评:本题考查等差数列的通项公式和求和公式,得出数列的公差是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{ban}是公比为64的等比数列.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求证:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
4
的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求证:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1的等差数列,且公差不为零,而等比数列{bn}的前三项分别是a1,a2,a6
(I)求数列{an}的通项公式an
(II)若b1+b2+…bk=85,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1,公差为2的等差数列,又数列{bn}的前n项和Sn=nan
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若cn=
1bn(2an+3)
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an
(1)若a1、a3、a4成等比数列,求数列{an}的通项公式;
(2)若对任意n∈N*都有bn≥b5成立,求实数a的取值范围;
(3)数列{cn}满足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,当a=-20时,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步练习册答案