精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1中,BC⊥侧面AA1C1C,AC=BC=1,CC1=2, ∠CAA1= ,D、E分别为AA1、A1C的中点.

(1)求证:A1C⊥平面ABC;(2)求平面BDE与平面ABC所成角的余弦值.
(1)通过余弦定理来证明AC⊥A1C,以及结合题目中的BC⊥A1C来得到证明。
(2)

试题分析:解:(1)证明:∵BC⊥侧面AA1C1C,A1C在面AA1C1C内,∴BC⊥A1C.  2分
在△AA1C中,AC=1,AA1=C1C=2,∠CAA1=
由余弦定理得A1C2=AC2+-2AC•AA1cos∠CAA1=12+22-2×1×2×cos=3, 
∴A1C=   ∴AC2+A1C2=AA12   ∴AC⊥A1C                 5分
∴A1C⊥平面ABC.                                            6分
(2)由(Ⅰ)知,CA,CA1,CB两两垂直
∴如图,以C为空间坐标系的原点,分别以CA,CA1,CB所在直线为x,y,z轴建立空间直角坐标系,则C(0,0,0),B(0,0,1),A(1,0,0),A1(0,,0)
由此可得D(,0),E(0,,0),=(,-1),=(0,,-1).
设平面BDE的法向量为=(x,y,z),则有令z=1,则x=0,y=
=(0,,1)          9分
∵A1C⊥平面ABC   ∴=(0,,0)是平面ABC的一个法向量        10分
    
∴平面BDE与ABC所成锐二面角的余弦值为.       12分
点评:主要是考查了空间中线面位置关系,以及二面角的平面角的求解的综合运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S﹣ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=2,请建立空间直角坐标系解决下列问题.

(1)求证:;(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥中,底面为平行四边形,侧面,已知
(Ⅰ)求证:
(Ⅱ)在SB上选取点P,使SD//平面PAC ,并证明;
(Ⅲ)求直线与面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知ABCD-A1B1C1D1为正方体,①()2=32;②·()=0;③向量与向量的夹角是60°;④正方体ABCD-A1B1C1D1的体积为|··|.其中正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在边长为的正方体中,分别是的中点,试用向量的方法:

求证:平面
与平面所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。

(1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明;
(2)求平面BCE与平面ACD所成锐二面角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.(1)证明:⊥平面(2)求平面与平面所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱柱中,的中点,.
(Ⅰ) 证明:∥平面
(Ⅱ)证明:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.

(1)求证AC⊥平面DEF;
(2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
(3)求平面ABD与平面DEF所成锐二面角的余弦值。

查看答案和解析>>

同步练习册答案