精英家教网 > 高中数学 > 题目详情

若函数数学公式在定义域内有三个零点,则实数a的取值范围是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:已知条件转化为函数有两个极值点,并且极小值小于0,极大值大于0,求解即可得到实数a的取值范围.
解答:由函数f(x)= 有三个不同的零点,
则函数f(x)有两个极值点,极小值小于0,极大值大于0.
由f′(x)=x2+x-2=(x-1)•(x+2)=0,解得x1=-2,x2=1.
所以当 x∈(-∞,-2)时,f′(x)>0,x∈(-2,1),f′(x)<0,x∈(1,+∞),f′(x)>0,
∴函数的极大值为f(-2)=+a,极小值为 f(1)=-+a.
因为函数f(x)=x3-3x+a有三个不同的零点,
,解得-<a<
故选C.
点评:本题是中档题,考查函数的导数与函数的极值的关系,考查转化思想,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
1
3
x3+
1
2
x2-2x+a
在定义域内有三个零点,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)对于定义在区间D上的函数f(X),若存在闭区间[a,b]?D和常数c,.使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(X)为区间D上的“平顶型”函数.给出下列说法:
①“平顶型”函数在定义域内有最大值;
②“平顶型”函数在定义域内一定没有最小值;
③函数f(x)=-|x+2|-|x-1|为R上的“平顶型”函数;
④函数f(x)=sinx-|sinx|为R上的“平顶型”函数.
则以上说法中正确的是
①③
①③
.(填上你认为正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)对于定义在区间D上的函数f(X),若存在闭区间[a,b]?D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列说法:
①“平顶型”函数在定义域内有最大值;
②函数f(x)=x-|x-2|为R上的“平顶型”函数;
③函数f(x)=sinx-|sinx|为R上的“平顶型”函数;
④当t≤
3
4
时,函数,f(x)=
2,(x≤1)
log
1
2
(x-t),(x>1)
是区间[0,+∞)上的“平顶型”函数.
其中正确的是
①②④
①②④
.(填上你认为正确结论的序号)

查看答案和解析>>

科目:高中数学 来源:山东省济宁市汶上一中2011-2012学年高二3月月考数学文科试题 题型:013

若函数f(x)=x3x2-2x+a在定义域内有三个零点,则实数a的取值范围是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案