精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知椭圆 =l (a>b>0)的焦距为2,离心率为 ,椭圆的右顶点为A.

(1)求该椭圆的方程:
(2)过点D( ,﹣ )作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的
斜率之和为定值.

【答案】
(1)

解:由题意可知:椭圆 =l (a>b>0),焦点在x轴上,2c=1,c=1,

椭圆的离心率e= = ,则a= ,b2=a2﹣c2=1,

则椭圆的标准方程:


(2)

解:证明:设P(x1,y1),Q(x2,y2),A( ,0),

由题意PQ的方程:y=k(x﹣ )﹣

,整理得:(2k2+1)x2﹣(4 k2+4 k)x+4k2+8k+2=0,

由韦达定理可知:x1+x2= ,x1x2=

则y1+y2=k(x1+x2)﹣2 k﹣2 =

则kAP+kAQ= + =

由y1x2+y2x1=[k(x1 )﹣ ]x2+[k(x2 )﹣ ]x1=2kx1x2﹣( k+ )(x1+x2)=﹣

kAP+kAQ= = =1,

∴直线AP,AQ的斜率之和为定值1


【解析】(1)由题意可知2c=2,c=1,离心率e= ,求得a=2,则b2=a2﹣c2=1,即可求得椭圆的方程:(2)则直线PQ的方程:y=k(x﹣ )﹣ ,代入椭圆方程,由韦达定理及直线的斜率公式,分别求得直线AP,AQ的斜率,即可证明直线AP,AQ的率之和为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,将一块半径为2的半圆形纸板切割成等腰梯形的形状,下底AB是半圆的直径,上底CD的端点在半圆上,则所得梯形的最大面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P在曲线y= ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC= AD=1,CD=
(1)求证:平面PQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C为30°,设PM=tMC,试确定t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足 = ,且 =1,则实数λ的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且 =
(1)求异面直线MN与PC所成角的大小;
(2)求二面角N﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足:f(x)= ,且f(x+2)=f(x),g(x)= ,则方程f(x)=g(x)在区间[﹣7,3]上的所有实数根之和为(
A.﹣9
B.﹣10
C.﹣11
D.﹣12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知右焦点为F2(c,0)的椭圆C: + =1(a>b>0)过点(1, ),且椭圆C关于直线x=c对称的图形过坐标原点.
(1)求椭圆C的方程;
(2)过点( ,0)作直线l与椭圆C交于E,F两点,线段EF的中点为M,点A是椭圆C的右顶点,求直线MA的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1(a>0,b>0)的左、右焦点分别为F1 , F2 , O为坐标原点,点P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=120°,则双曲线的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案