【题目】设点P在曲线y= ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为 .
【答案】
【解析】解:∵函数y= ex与函数y=ln(2x)互为反函数,图象关于y=x对称 函数y= ex上的点P(x, ex)到直线y=x的距离为d=
设g(x)= ex﹣x,(x>0)则g′(x)= ex﹣1
由g′(x)= ex﹣1≥0可得x≥ln2,
由g′(x)= ex﹣1<0可得0<x<ln2
∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增
∴当x=ln2时,函数g(x)min=1﹣ln2,dmin=
由图象关于y=x对称得:|PQ|最小值为2dmin= .
故答案为: .
由于函数y= ex与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数y= ex上的点P(x, ex)到直线y=x的距离为d= ,设g(x)= ex﹣x,求出g(x)min=1﹣ln2,即可得出结论.
科目:高中数学 来源: 题型:
【题目】数列{an}是以a为首项,q为公比的等比数列,数列{bn}满足bn=1+a1+a2+…+an(n=1,2,…),数列{cn}满足cn=2+b1+b2+…+bn(n=1,2,…).若{cn}为等比数列,则a+q=( )
A.
B.3
C.
D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDPE中,四边形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点.
(1)求证:BF∥平面ADP;
(2)求二面角B﹣DF﹣P的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为16,20,则输出的a=( )
A.0
B.2
C.4
D.14
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点F(0,1),且与定直线l:y=﹣1相切.
(1)求动圆圆心的轨迹C的方程;
(2)若点A(x0 , y0)是直线x﹣y﹣4=0上的动点,过点A作曲线C的切线,切点记为M,N.
①求证:直线MN恒过定点;
②△AMN的面积S的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线C于点N.
(1)证明:抛物线C在点N处的切线与AB平行;
(2)是否存在实数k使以AB为直径的圆M经过点N,若存在,求k的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M、N两点(M在x轴上方),满足 , ,则以M为圆心且与抛物线准线相切的圆的标准方程为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆 =l (a>b>0)的焦距为2,离心率为 ,椭圆的右顶点为A.
(1)求该椭圆的方程:
(2)过点D( ,﹣ )作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的
斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线 的焦点F1与椭圆 的一个焦点重合,Γ的准线与x轴的交点为F1 , 若Γ与C的交点为A,B,且点A到点F1 , F2的距离之和为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若不过原点且斜率存在的直线l交椭圆C于点G,H,且△OGH的面积为1,线段GH的中点为P.在x轴上是否存在关于原点对称的两个定点M,N,使得直线PM,PN的斜率之积为定值?若存在,求出两定点M,N的坐标和定值的大小;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com