【题目】已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M、N两点(M在x轴上方),满足 , ,则以M为圆心且与抛物线准线相切的圆的标准方程为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】如图,三行三列的方阵中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节期间商场为活跃节日气氛,特举行“购物有奖”抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为 ,每次中奖可以获得20元购物代金券,方案乙的中奖率为 ,每次中奖可以获得30元购物代金券,未中奖则不获得购物代金券,每次抽奖中奖与否互不影响,已知小明通过购物获得了2次抽奖机会.
(1)若小明选择方案甲、乙各抽奖一次,记他累计获得的购物代金券面额之和为X,求X≤30的概率;
(2)设小明两次抽奖都选择方案甲或都选择方案乙,且都选择方案乙时,已算得,累计获得的购物代金券面额之和X1的数学期望E(X1)=24,问:小明选择这两种方案中的何种方案抽奖,累计获得的购物代金券面额之和的数学期望较大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校举行“庆元旦”教工羽毛球单循环比赛(任意两个参赛队只比赛一场),共有高一、高二、高三三个队参赛,高一胜高二的概率为 ,高一胜高三的概率为 ,高二胜高三的概率为P,每场胜负独立,胜者记1分,负者记0分,规定:积分相同者高年级获胜.
(Ⅰ)若高三获得冠军概率为 ,求P.
(Ⅱ)记高三的得分为X,求X的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC= AD=1,CD= .
(1)求证:平面PQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C为30°,设PM=tMC,试确定t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数满足:f(x)= ,且f(x+2)=f(x),g(x)= ,则方程f(x)=g(x)在区间[﹣7,3]上的所有实数根之和为( )
A.﹣9
B.﹣10
C.﹣11
D.﹣12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|+|2x+5|,且f(x)≥m恒成立.
(Ⅰ)求m的取值范围;
(Ⅱ)当m取最大值时,解关于x的不等式:|x﹣3|﹣2x≤2m﹣8.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com