精英家教网 > 高中数学 > 题目详情

【题目】如图,三行三列的方阵中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是(
A.
B.
C.
D.

【答案】D
【解析】解:从9个数中任取3个数共有C93=84种取法, 取出的三个数,使它们不同行且不同列:从第一行中任取一个数有

C

1 3

种方法,
则第二行只能从另外两列中的两个数任取一个有

C

1 2

种方法,
第三行只能从剩下的一列中取即可有1中方法,
∴共有 × =6种方法,即三个数分别位于三行或三列的情况有6种,
∴所求的概率为 =
故答案选 D.
从9个数中任取3个数共有C93=84种取法,求得不满足要求的选法共有6种,可得满足条件的选法有84﹣6=78种,从而求得所求事件的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|cosx|sinx,给出下列四个说法: ①
②函数f(x)的周期为π;
③f(x)在区间 上单调递增;
④f(x)的图象关于点 中心对称
其中正确说法的序号是(
A.②③
B.①③
C.①④
D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】医生的专业能力参数K可有效衡量医生的综合能力,K越大,综合能力越强,并规定:能力参数K不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力K的频率分布直方图:
(1)求出这个样本的合格率、优秀率;
(2)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名. ①求这2名医生的能力参数K为同一组的概率;
②设这2名医生中能力参数K为优秀的人数为X,求随机变量X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是以a为首项,q为公比的等比数列,数列{bn}满足bn=1+a1+a2+…+an(n=1,2,…),数列{cn}满足cn=2+b1+b2+…+bn(n=1,2,…).若{cn}为等比数列,则a+q=(
A.
B.3
C.
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:ρ=(ρcosθ+4)cosθ.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C的参数方程为 (t为参数). (Ⅰ)求C1 , C2的直角坐标方程;
(Ⅱ)C与C1 , C2交于不同四点,这四点在C上的排列顺次为H,I,J,K,求||HI|﹣|JK||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a2=6,a3+a6=27.
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn , 且Tn= ,若对于一切正整数n,总有Tn≤m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AQI是表示空气质量的指数,AQI指数值越小,表明空气质量越好,当AQI指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI指数值的统计数据,图中点A表示4月1日的AQI指数值为201,则下列叙述不正确的是(
A.这12天中有6天空气质量为“优良”
B.这12天中空气质量最好的是4月9日
C.这12天的AQI指数值的中位数是90
D.从4日到9日,空气质量越来越好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDPE中,四边形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点.
(1)求证:BF∥平面ADP;
(2)求二面角B﹣DF﹣P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M、N两点(M在x轴上方),满足 ,则以M为圆心且与抛物线准线相切的圆的标准方程为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案