精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线C于点N.
(1)证明:抛物线C在点N处的切线与AB平行;
(2)是否存在实数k使以AB为直径的圆M经过点N,若存在,求k的值,若不存在,说明理由.

【答案】
(1)证明:设A(x1,y1),B(x2,y2),

把y=kx+2代入y=2x2得2x2﹣kx﹣2=0,

得x1+x2=

∵xN=xM= = ,∴N点的坐标为( ).

∵y′=4x,∴y′| =k,

即抛物线在点N处的切线的斜率为k.

∵直线l:y=kx+2的斜率为k,

∴l∥AB


(2)解:假设存在实数k,使AB为直径的圆M经过点N.

由于M是AB的中点,∴|MN|= |AB|.

由(1)知yM= (y1+y2)= (kx1+2+kx2+2)

= [k(x1+x2)+4]= (4+ )=2+

由MN⊥x轴,则|MN|=|yM﹣yN|=2+ =

∵|AB|=

= =

=

∴k=±2,

则存在实数k=±2,使AB为直径的圆M经过点N


【解析】(1)设A(x1 , y1),B(x2 , y2),联立直线方程和抛物线方程,运用韦达定理和中点坐标公式,可得M,N的坐标,再由y=2x2的导数,可得在点N处的切线斜率,由两直线平行的条件即可得证;(2)假设存在实数k,使AB为直径的圆M经过点N.由于M是AB的中点,则|MN|= |AB|,运用弦长公式计算化简整理,即可求得k=±2,故存在实数k,使AB为直径的圆M经过点N.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2axx2-3ln x,其中a∈R,为常数.

(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;

(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的方程为(x﹣ 2+(y+1)2=9,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线OP:θ= (p∈R)与圆C交于点M,N,求线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆: (a>b>0),左右焦点分别是F1 , F2 , 焦距为2c,若直线 与椭圆交于M点,满足∠MF1F2=2∠MF2F1 , 则离心率是(
A.
B. -1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,在抛物线上,的重心与此抛物线的焦点重合(如图)

(I)写出该抛物线的方程和焦点的坐标;

(II)求线段中点的坐标;

(III)求弦所在直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C (a>b>0)的一个顶点为A(2,0),离心率为.直线yk(x-1)与椭圆C交于不同的两点MN.

(1)求椭圆C的方程;

(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的定义在实数集R上的奇函数,且当x∈(﹣∞,0)时,xf′(x)<f(﹣x)(其中f′(x)是f(x)的导函数),若a= f( ),b=(lg3)f(lg3),c=(log2 )f(log2 ),则(
A.c>a>b
B.c>b>a
C.a>b>c
D.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的双曲线的方程:

(1) 虚轴长为12,离心率为

(2) 焦点在x轴上,顶点间距离为6,渐近线方程为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣x,若对任意x1 , x2∈[2,+∞),且x1≠x2 , 不等式 >0恒成立,则实数a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案