精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,圆C的方程为(x﹣ 2+(y+1)2=9,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线OP:θ= (p∈R)与圆C交于点M,N,求线段MN的长.

【答案】
(1)解:(x﹣ 2+(y+1)2=9可化为x2+y2﹣2 x+2y﹣5=0,

故其极坐标方程为ρ2﹣2 ρcosθ+2ρsinθ﹣5=0


(2)解:将θ= 代入ρ2﹣2 ρcosθ+2ρsinθ﹣5=0,得ρ2﹣2ρ﹣5=0,

∴ρ12=2,ρ1ρ2=﹣5,

∴|MN|=|ρ1﹣ρ2|= =2


【解析】(1)利用直角坐标方程化为极坐标方程的方法,求圆C的极坐标方程;(2)利用|MN|=|ρ1﹣ρ2|,求线段MN的长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又在区间(0,+∞)上是单调增函数的是(
A.
B.y=|x|﹣1
C.y=lgx
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=cos2x+asinx在区间( )是减函数,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.

(1)求的方程;

(2)若动点在直线上,过作直线交椭圆两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点O,焦点在x轴上,离心率为 ,椭圆C上的点到右焦点的最大距离为3.
(1)求椭圆C的标准方程;
(2)斜率存在的直线l与椭圆C交于A,B两点,并且满足|2 + |=|2 |,求直线在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数上单调递增,则

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆经过点,离心率为

(1)求的方程;

(2)过的左焦点且斜率不为的直线相交于两点,线段的中点为,直线与直线相交于点,若为等腰直角三角形,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线C于点N.
(1)证明:抛物线C在点N处的切线与AB平行;
(2)是否存在实数k使以AB为直径的圆M经过点N,若存在,求k的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是 (t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

同步练习册答案