精英家教网 > 高中数学 > 题目详情
下列各区间为函数y=sinx的增区间的是(  )
A、(-
π
2
π
2
B、(0,π)
C、(
π
2
2
D、(π,2π)
考点:正弦函数的单调性
专题:三角函数的图像与性质
分析:直接利用正弦函数的图象求出单调增区间.
解答: 解:根据正弦函数的函数图象,
在[-π,π]内,函数y=sinx的单调递增区是:[-
π
2
π
2
],
故选:A.
点评:本题考查的知识要点:正弦函数的图象,单调性的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an},其前n项和Sn满足10Sn=
a
2
n
+5an+6,且a3<13.
(1)求数列{an}的通项公式
(2)令bn=
1
2an+3+1
,求证:b1+b2+…+bn
1
31

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+cosα,则曲线f(x)在x=
π
6
处的切线斜率为(  )
A、
π
3
B、
π
3
+
3
2
C、
π
3
-
3
2
D、
π
3
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

体育老师把9个相同的足球放入编号为1,2,3的三个箱中,要求每个箱子放球的个数不少于其编号,则不同的放球方法有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(3,1)作曲线C:x2+y2-2x=0的两条切线,切点分别为A,B,则直线AB的方程为(  )
A、2x+y-3=0
B、2x-y-3=0
C、4x-y-3=0
D、4x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,当n≥2时,其前n项和Sn满足S
 
2
n
=an(Sn-
1
2

(1)求Sn的表达式
(2)设bn=
Sn
2n+1
,Tn是{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在平面直角坐标系xOy中,设椭圆E:
x2
a2
+
y2
b2
=1(a>b>0),离心率为
1
2
,过椭圆E内一点P(1,1)的两条直线分别与椭圆交于点A、C和B、D,且满足
AP
PC
BP
PD
,其中λ为正常数.
(1)当点C恰为椭圆的右顶点时,对应的λ=
5
7
,求椭圆的方程.
(2)当λ变化时,kAB是否为定值?若是,请求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对边的长分别为a,b,c,且
sinB
sinA
sinC
sinA
cosB
cosA
成等差数列
(1)求角A的值
(2)若a=
10
,b+c=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=logax-x+2有两个零点x1,x2其中x1∈(0,1),x2∈(2,3),则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案