精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)为偶函数,且f(x+2)=-f(x),当x∈(0,1)时,f(x)=($\frac{1}{2}$)x,则f($\frac{7}{2}$)=$\frac{\sqrt{2}}{2}$.

分析 由已知可得函数的周期为4,结合当x∈(0,1)时,f(x)=($\frac{1}{2}$)x,可得答案.

解答 解:∵当x∈(0,1)时,f(x)=($\frac{1}{2}$)x
∴f($\frac{1}{2}$)=f(-$\frac{1}{2}$)=$\frac{\sqrt{2}}{2}$,
又∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
f($\frac{7}{2}$)=f(-$\frac{1}{2}$)=$\frac{\sqrt{2}}{2}$,
故答案为:$\frac{\sqrt{2}}{2}$

点评 本题考查的知识点是抽象函数的应用,函数求值,函数的周期性,函数的奇偶性,转化思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.5名学生进行知识竞赛,笔试结束后,甲、乙两名参赛者去询问成绩,回答者对甲说:“你们5人的成绩互不相同,很遗憾,你的成绩不是最好的”;对乙说:“你不是最后一名”.根据以上信息,这5个人的笔试名次的所有可能的种数是(  )
A.54B.72C.78D.96

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知方程3x+x=5的根在区间[k,k+1)(k∈Z),则k的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=\sqrt{-3{x^2}+ax}-\frac{a}{x}$(a>0).若存在x0,使得f(x0)≥0成立,则a的最小值为12$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知角α的终边经过点P(2,m)(m>0),且cosα=$\frac{2\sqrt{5}}{5}$,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$(e为自然对数的底数,e=2.71828…).
(1)证明:函数f(x)为奇函数;
(2)判断并证明函数f(x)的单调性,再根据结论确定f(m2-m+1)+f(-$\frac{3}{4}$)与0的大小关系;
(3)是否存在实数k,使得函数f(x)在定义域[a,b]上的值域为[kea,keb].若存在,求出实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若圆(x-1)2+y2=25的弦AB被点P(2,1)平分,则直线AB的方程为(  )
A.2x+y-3=0B.x+y-3=0C.x-y-1=0D.2x-y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.($\frac{9}{4}$)${\;}^{\frac{1}{2}}$+($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$=3;log412-log43=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a>0,函数f(x)=x+$\frac{{a}^{2}}{x}$,g(x)=x-lnx,若对任意的x2∈[$\frac{1}{e}$,1],存在${x_1}∈[\frac{1}{e},1]$,f(x1)≥g(x2)成立,则实数a的取值范围是[$\frac{1}{2}$,+∞)∪[$\frac{\sqrt{{e}^{2}-1}}{e}$,$\frac{1}{e}$].

查看答案和解析>>

同步练习册答案