分析 要使得内接△ABP面积最大,则只须使得过P点的切线与直线2x-y+4=0平行,由导数的性质能求出P位于(4,4)点处时,△ABP面积最大.
解答 解:要使得内接△ABP面积最大,则只须使得过P点的切线与直线2x-y+4=0平行,
∵x2=4y,
∴y=$\frac{1}{4}{x}^{2}$,
∵y′=$\frac{1}{2}x$,直线2x-y+4=0斜率为2,
∴过P点的切线斜率k=yp′=2,
解得xP=4,则可得yP=4
∴P位于(4,4)点处时,△ABP面积最大.两条平行线间的距离为$\frac{4}{\sqrt{5}}$,
直线2x-y+4=0与抛物线x2=4y联立,可得x2-8x-16=0,
∴|AB|=$\sqrt{1+4}•\sqrt{36+64}$=10$\sqrt{5}$,
∴△ABP面积的最大值是$\frac{1}{2}×10\sqrt{5}×\frac{4}{\sqrt{5}}$=20,
故答案为:20.
点评 本题主要考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系等基础知识.考查运算求解能力,推理论证能力;考查化归与转化思想.解题时要认真审题,注意导数性质的灵活运用.
科目:高中数学 来源: 题型:解答题
| 时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
| 车流量x(万辆) | 50 | 51 | 54 | 57 | 58 |
| PM2.5的浓度y(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow a+\overrightarrow b$ | B. | $2\overrightarrow a+3\overrightarrow b$ | C. | $3\overrightarrow a-2\overrightarrow b$ | D. | $2\overrightarrow b-2\overrightarrow a$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{π}{6}$,0) | B. | (-$\frac{π}{12}$,$\frac{π}{6}$) | C. | (0,$\frac{π}{6}$) | D. | ($\frac{π}{6}$,$\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com