精英家教网 > 高中数学 > 题目详情
如图,已知椭圆C0,动圆C1.点A1,A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点。
(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2与C0相交于A',B',C',D'四点,其中b<t2<a,t1≠t2,若矩形ABCD与矩形A'B'C'D'的面积相等,证明:为定值。
解:(1)设A(x1,y1),B(x2,y2),
∵A1(-a,0),A2(a,0),
则直线A1A的方程为
直线A2B的方程为
由①×②可得:
∵A(x1,y1)在椭圆C0上,

代入③可得:

(2)证明:设A′(x3,y3),
∵矩形ABCD与矩形A'B'C'D'的面积相等
∴4|x1||y1|=4|x3||y3|
=
∵A,A′均在椭圆上,
=
=

∵t1≠t2
∴x1≠x2



=a2+b2为定值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•辽宁)如图,已知椭圆C0
x2
a2
+
y2
b2
=1(a>b>0,a,b为常数)
,动圆C1x2+y2=
t
2
1
,b<t1<a
.点A1,A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点.
(I)求直线AA1与直线A2B交点M的轨迹方程;
(II)设动圆C2x2+y2=
t
2
2
与C0相交于A',B',C',D'四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A'B'C'D'的面积相等,证明:
t
2
1
+
t
2
2
为定值.

查看答案和解析>>

科目:高中数学 来源:2012年辽宁省高考数学试卷(理科)(解析版) 题型:解答题

如图,已知椭圆C,动圆C1.点A1,A2分别为C的左右顶点,C1与C相交于A,B,C,D四点.
(I)求直线AA1与直线A2B交点M的轨迹方程;
(II)设动圆C2与C0相交于A',B',C',D'四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A'B'C'D'的面积相等,证明:为定值.

查看答案和解析>>

同步练习册答案