精英家教网 > 高中数学 > 题目详情
20.(1+x+x2)(x-$\frac{1}{x}$)6的展开式中的常数项为m,则函数y=-x2与y=mx的图象所围成的封闭图形的面积为(  )
A.$\frac{625}{6}$B.$\frac{250}{6}$C.$\frac{375}{6}$D.$\frac{125}{6}$

分析 由题意,先根据二项展开式的通项求出常数项m,然后利用积分,求得图形的面积即可

解答 解:由于(x-$\frac{1}{x}$)6的展开式的通项为Tr+1=$(-1)^{r}{C}_{6}^{r}{x}^{6-2r}$,
分别令6-2r=0可得r=3,T4=-20,
令6-2r=-1,则r不存在,
令6-2r=-2可得r=4,T5=15x-2
∴m=-20×1+15x-2×x2=-5,
∴y=-x2与y=mx=-5x的交点O(0,0),A(5,-25),
图象围成的封闭图形的面积S=${∫}_{0}^{5}(-{x}^{2}+5x)dx$=$(-\frac{1}{3}{x}^{3}+\frac{5}{2}{x}^{2}){|}_{0}^{5}$=$\frac{125}{6}$.
故选:D.

点评 本题考查定积分在求面积中的应用以及二项式的性质,求解的关键利用二项式定理求出常数项,积分与二项式定理这样结合,形式较新颖,本题易因为对两个知识点不熟悉公式用错而导致错误,牢固掌握好基础知识很重要.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.(1)求证:1+$\frac{1}{{3}^{2}}$+$\frac{1}{{5}^{2}}$+…+$\frac{1}{(2n-1)^{2}}$>$\frac{7}{6}$-$\frac{1}{2(2n-1)}$(n≥2)
(2)求证:$\frac{1}{4}$+$\frac{1}{16}$+$\frac{1}{36}$+…+$\frac{1}{4{n}^{2}}$<$\frac{1}{2}$-$\frac{1}{4n}$
(3)求证:$\frac{1}{2}$+$\frac{1•3}{2•4}$+$\frac{1•3•5}{2•4•6}$+…+$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$\sqrt{2n+1}$-1
(4)求证:2($\sqrt{n+1}$-1)<1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<$\sqrt{2}$($\sqrt{2n+1}$-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求适合方程tan(19x)°=$\frac{cos99°+sin99°}{cos99°-sin99°}$的最小正整数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在R上的奇函数f(x),若当x>0总有f′(x)<2xf(x)+e${\;}^{{x}^{2}}$(e为自然对数的底数)成立,f(1)=e,则不等式f(x)≥xe${\;}^{{x}^{2}}$的解集为(  )
A.(-∞,-1]∪(0,1]B.(-∞,-1]∪[0,1]C.(0,1]D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=alnx-2ax+b.函数y=f(x)的图象在点(1,f(1))处的切线方程是y=2x+1,则a+b的值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆O:x2+y2=1,直线l过点(-2,0),若直线l上任意一点到圆心距离的最小值等于圆的半径,则直线l的斜率为(  )
A.$±\frac{{\sqrt{3}}}{3}$B.±3C.$±\sqrt{2}$D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD中,底面ABCD是边长为 4的菱形,PD=PB=4,∠BAD=60°,E为PA中点.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求证:平面EBD⊥平面PAC;
(Ⅲ)若PA=PC,求三棱锥C-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(3,-2),$\overrightarrow{c}$=(3,4)
(1)求$\overrightarrow{a}$•($\overrightarrow{b}$+$\overrightarrow{c}$);
(2)若($\overrightarrow{a}$+λ$\overrightarrow{b}$)∥$\overrightarrow{c}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线y2=-4$\sqrt{2}$x的焦点到双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=l(a>0,b>0)的一条渐近线的距离为$\frac{\sqrt{5}}{5}$,则该双曲线的离心率为(  )
A.$\frac{2\sqrt{2}}{3}$B.$\frac{\sqrt{10}}{3}$C.$\sqrt{10}$D.$\frac{2\sqrt{390}}{39}$

查看答案和解析>>

同步练习册答案