精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{x}^{2}+2x,x≤0}\end{array}\right.$,则f(f($\frac{1}{3}$))=-1,函数y=f(x)的零点是-2,1.

分析 由分段函数先求出f($\frac{1}{3}$)=log3$\frac{1}{3}$=-1,从而f(f($\frac{1}{3}$))=f(-1),由此能求出f(f($\frac{1}{3}$))的值;当x>0时,y=f(x)=log3x,当x≤0时,y=f(x)=x2+2x,由此能求出函数y=f(x)的零点.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{x}^{2}+2x,x≤0}\end{array}\right.$,
∴f($\frac{1}{3}$)=log3$\frac{1}{3}$=-1,
f(f($\frac{1}{3}$))=f(-1)=(-1)2+2×(-1)=-1.
当x>0时,y=f(x)=log3x,由y=0,解得x=1,
当x≤0时,y=f(x)=x2+2x,由y=0,得x=-2或x=0.(舍).
∴函数y=f(x)的零点是-2,1.
故答案为:-1;-2,1.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).
(1)判断f(x)=3x+2是否属于集合M,并说明理由;
(2)若$f(x)=lg\frac{a}{{{x^2}+2}}$属于集合M,求实数a的取值范围;
(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设等差数列{an}{bn}前项和为Sn、Tn,若对任意的n∈N*,都有$\frac{S_n}{T_n}=\frac{2n-3}{4n-3}$,则$\frac{a_2}{{{b_3}+{b_{13}}}}+\frac{{{a_{14}}}}{{{b_5}+{b_{11}}}}$的值为(  )
A.$\frac{29}{45}$B.$\frac{13}{29}$C.$\frac{9}{19}$D.$\frac{19}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$tan(α+β)=\frac{1}{2},tan(α+\frac{π}{4})=-\frac{1}{3}$,则$tan(β-\frac{π}{4})$=(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(2x)=x•log32,则f(39)的值为(  )
A.$\frac{1}{6}$B.$\frac{1}{9}$C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC中,a,b,c分别为角A,B,C的对边,csinC-asinA=($\sqrt{3}$c-b)sinB.
(Ⅰ)求角A;
(Ⅱ)若a=1,求三角形ABC面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.方程|x|-1=$\sqrt{1-(y-1)^{2}}$所表示的图形是(  )
A..一个半圆B.一个圆C.两个半圆D.两个圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若过点P(1,$\sqrt{3}$)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是(  )
A.[$\frac{π}{2}$,$\frac{2π}{3}$]B.[$\frac{π}{6}$,$\frac{π}{3}$]C.[$\frac{π}{3}$,$\frac{π}{2}$]D.[$\frac{π}{6}$,$\frac{π}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.命题“存在x∈R,x2+2ax+1<0”为假命题,则a的取值范围是[-1,1].

查看答案和解析>>

同步练习册答案