精英家教网 > 高中数学 > 题目详情
6.已知$tan(α+β)=\frac{1}{2},tan(α+\frac{π}{4})=-\frac{1}{3}$,则$tan(β-\frac{π}{4})$=(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

分析 由已知利用两角差的正切函数公式即可计算得解.

解答 解:∵$tan(α+β)=\frac{1}{2},tan(α+\frac{π}{4})=-\frac{1}{3}$,
∴$tan(β-\frac{π}{4})$=tan[(α+β)-(α+$\frac{π}{4}$)]=$\frac{tan(α+β)-tan(α+\frac{π}{4})}{1+tan(α+β)tan(α+\frac{π}{4})}$=$\frac{\frac{1}{2}-(-\frac{1}{3})}{1+\frac{1}{2}×(-\frac{1}{3})}$=1.
故选:C.

点评 本题主要考查了两角差的正切函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,外接圆半径为1,且$\frac{tanA}{tanB}$=$\frac{2c-b}{b}$,则△ABC面积的最大值为$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某品牌电脑专卖店的年销售量y与该年广告费用x有关,如表收集了4组观测数据:
x(万元)1456
y(百台)30406050
以广告费用x为解释变量,销售量y为预报变量对这两个变量进行统计分析.
(1)已知这两个变量呈线性相关关系,试建立y与x之间的回归方程$\hat y=\hat bx+\hat a$;
(2)假如2017年该专卖店广告费用支出计划为10万元,请根据你得到的模型,预测这一年的销售量y.
参考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.孝汉城铁于12月1日开通,C5302、C5321两列车乘务组工作人员为了了解乘坐本次列车的乘客每月需求情况,分别在两个车次各随机抽取了100名旅客进行调查,下面是根据调查结果,绘制了乘车次数的频率分布直方图和频数分布表.
C5321次乘客月乘坐次数频数分布表
乘车次数分组频数
[0,5)15
[5,10)20
[10,15)25
[15,20)24
[20,25)11
[25,30]5
(1)若将频率视为概率,月乘车次数不低于15次的称之为“老乘客”,试问:哪一车次的“老乘客”较多,简要说明理由.
(2)已知在C5321次列车随机抽到的50岁以上人员有35名,其中有10名是“老乘客”,由条件完成下面2×2列联表,并根据资料判断,是否有90%的把握认为年龄有乘车次数有关,说明理由.
老乘客新乘客合计
50岁以上102535          
50岁以下303565
合计4060100
附:随机变量${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d为样本总量)
P(k2≥k00.250.150.100.050.025
k01.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$cos(x-\frac{π}{4})=\frac{{\sqrt{2}}}{10},x∈(\frac{π}{2},\frac{3π}{4})$.
(1)求sinx的值;
(2)求$sin(2x+\frac{π}{6})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知A={x|y2=x},B={y|y2=x},则(  )
A.A∪B=AB.A∩B=AC.A=BD.(∁RA)∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{x}^{2}+2x,x≤0}\end{array}\right.$,则f(f($\frac{1}{3}$))=-1,函数y=f(x)的零点是-2,1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值为M,最小值为m,则$\frac{m}{M}$的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{x-2m,x≥m}\\{-x,-m<x<m}\\{x+2m,x≤-m}\end{array}\right.$,其中m>0,若对任意实数x,都有f(x)<f(x+1)成立,则实数m的取值范围为(0,$\frac{1}{4}$).

查看答案和解析>>

同步练习册答案