精英家教网 > 高中数学 > 题目详情
已知与圆C:x2+y2-2x-2y+1=0相切的直线交x轴于A点,交y轴于B点,O为原点,|OA|=a,|OB|=b(a>2,b>2).

(1)求证:(a-2)(b-2)=2;

(2)求线段AB中点的轨迹方程;

(3)求△AOB的面积的最小值.

(1)证明:直线l的方程为+=1.

∵圆与直线l相切,∴=1,得(a-2)(b-2)=2.

(2)解析:设线段AB中点为M(x,y),∴a=2x,b=2y.

代入(a-2)(b-2)=2得(x-1)(y-1)= (x>1,y>1).

(3)解析:ab=2(a+b)-2=2[(a-2)+(b-2)]+6,

SAOB=ab=(a-2)+(b-2)+3≥2=2+3.

∴当且仅当a=b=2+时,S△AOB的最小值为2+3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知与圆C:x2+y2-2x-2y+1=0相切的直线l交x轴、y轴于A、B两点,O为坐标原点,且|OA|=a,|OB|=b
(a>2,b>2).
(1)求直线l与圆C相切的条件;
(2)在(1)的条件下,求线段AB的中点轨迹方程;
(3)在(1)的条件下,求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知与圆C:x2+y2-2x-2y+1=0相切的直线交x轴于A点,交y轴于B点,O为原点,|OA|=a,|OB|=b(a>2,b>2).则线段AB中点的轨迹方程为
2xy-2x-2y-1=0(x>0,y>0)
2xy-2x-2y-1=0(x>0,y>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知与圆C:x2+y2-2x-2y+1=0相切的直线l交x轴、y轴于A、B两点,O为坐标原点,且|OA|=a,|OB|=b(a>2,b>2).
(1)求a与b满足的关系;
(2)在 (1)的条件下,求线段AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2014届河北省高二上学期第一次调研考试数学试卷(解析版) 题型:解答题

已知与圆C:x2+y2-2x-2y+1=0相切的直线l交x轴,y轴于A,B两点,

OA|=a,|OB|=b(a>2,b>2).

(Ⅰ)求证:(a-2)(b-2)=2;

(Ⅱ)求线段AB中点的轨迹方程;

(Ⅲ)求△AOB面积的最小值.

 

查看答案和解析>>

同步练习册答案