精英家教网 > 高中数学 > 题目详情
已知点A,D分别是椭圆(a>b>0)的左顶点和上顶点,点P是线段AD上的任意一点,点F1,F2分别是椭圆的左、右焦点,且的最大值是1,最小值是
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆的右顶点为B,点S是椭圆上位于x轴上方的动点,直线AS,BS与直线L:x=分别交于M,N两点,求线段MN长度的最小值;
(Ⅲ)当线段MN的长度最小时,在椭圆上是否存在T点,使得△TSB的面积是?若存在,确定点T个数;若不存在,说明理由。

解:(Ⅰ)设 P(x,y),F1(-c,0),F2(c,0),
(-c-x,-y),(c-x,-y),
=x2+y2-c2
∵P在线段AD上,
∴x2+y2可以看成线段AD上的点到原点距离的平方,
结合图形可以知道当P运动到A时x2+y2最大,最大值为a2
所以=x2+y2-c2的最大值为a2-c2=b2
当OP⊥AD时,x2+y2取得最小,最小值运用等面积法可得到x2+y2的最小值为
所以=x2+y2-c2的最小值为
的最大值是1,最小值是
故有,解得a2=4,
所以椭圆方程为
(Ⅱ)直线AS的斜率k显然存在,且k>0,
故可设直线的方程为y=k(x+2),
从而
得(1+4k2)x2+16k2x+16k2-4=0,
设S(x1,y1),
,得,从而
又B(2,0),得,所以
又k>0,故|MN|=,当且仅当时等号成立,
时,线段的长度取最小值
(Ⅲ)由(Ⅱ)可知,当取最小值时
此时BS的方程为2x+y-4=0,

要使椭圆上存在点T,使得△TSB的面积等于,只需T到直线BS的距离等于
所以点T在平行于BS且与BS距离等于的直线l′上,
设直线l′的方程为2x+y+c=0,
则由,解得c=-3或c=-5,
当c=-3时,由得Δ=128>0,故直线l′与椭圆有两个不同的交点;
当c=-5时,由得Δ=-128<0,故直线l′与椭圆没有交点;
综上所述,当线段MN的长度最小时,在椭圆上仅有两个点T,使得△TSB的面积等于

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•怀化三模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(
3
3
2
)
,离心率e=
1
2
,若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)
称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源:怀化三模 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(
3
3
2
)
,离心率e=
1
2
,若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)
称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源:2012年四川省乐山市高考数学二模试卷(文科)(解析版) 题型:选择题

已知P是椭画+=1左准线上一点,F1、F2分别是其左、右焦点,PF2与椭圆交于点Q,且=2,则||的值为( )
A.
B.4
C.
D.

查看答案和解析>>

科目:高中数学 来源:2013年湖南省怀化市高考数学三模试卷(文科)(解析版) 题型:解答题

已知椭圆过点,离心率,若点M(x,y)在椭圆C上,则点称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源:2013年黑龙江省哈尔滨三中高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆过点,离心率,若点M(x,y)在椭圆C上,则点称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

同步练习册答案