精英家教网 > 高中数学 > 题目详情
13.关于x的不等式x2-ax-6a2>0(a<0)的解集为(-∞,x1)∪(x2,+∞),且x2-x1=5$\sqrt{2}$,则a的值为(  )
A.-$\sqrt{5}$B.-$\frac{3}{2}$C.-$\sqrt{2}$D.-$\frac{\sqrt{5}}{2}$

分析 解不等式,求出x1=3a,x2=-2a,从而求出a的值即可.

解答 解:原不等式可化为(x+2a)(x-3a)>0,
当a<0时,-2a>3a,∴解得:x>-2a或x<3a,
故x1=3a,x2=-2a,
故且x2-x1=-5a=5$\sqrt{2}$,
解得:a=-$\sqrt{2}$,
故选:C.

点评 本题考查了解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某校开展“读好书,好读书”活动,要求本学期每人至少读一本课外书,该校高一共有100名学生,他们本学期读课外书的本数统计如图所示.
( I)求高一学生读课外书的人均本数;
(Ⅱ)从高一学生中任意选两名学生,求他们读课外书的本数恰好相等的概率;
(Ⅲ)从高一学生中任选两名学生,用ζ表示这两人读课外书的本数之差的绝对值,求随机变量ζ的分布列及数学期望Eζ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行程序框图,如果输入的N的值为7,那么输出的p的值是(  )
A.120B.720C.1440D.5040

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥k}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=2x+y的最小值为8,则y-x的取值范围为[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设△ABC的内角A,B,C所对的边分别为a,b,c,若a2+b2<c2,则△ABC的形状是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式(x-1)(2-x)>0的解集是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,直线y=x+$\sqrt{6}$与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相较于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点P为直线$y=\frac{3}{4}x$上任一点,F1(-5,0),F2(5,0),则下列结论正确的是(  )
A.||PF1|-|PF2||>8B.||PF1|-|PF2||=8C.||PF1|-|PF2||<8D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中正确的是(  )
A.若p∨q为真命题,则p∧q为真命题
B.若直线ax+y-1=0与直线x+ay+2=0平行,则a=1
C.若命题“?x∈R,x2+(a-1)x+1<0”是真命题,则实数a的取值范围是a<-1或a>3
D.命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”

查看答案和解析>>

同步练习册答案