精英家教网 > 高中数学 > 题目详情
函数y=
x-1
的单调递增区间为
 
考点:函数单调性的判断与证明
专题:函数的性质及应用
分析:先求出函数的定义域,再根据复合函数“同增异减”的性质,从而求出函数的单调区间.
解答: 解:∵x-1≥0,
∴函数的定义域是:[1,+∞),
又y=
x
,y=x-1同为增函数,
∴y=
x-1
在定义域单调递增,
故答案为:[1,+∞).
点评:本题考查了复合函数的单调性,考查了二次函数的定义域,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量,已知AB=50m,BC=120m,于A处测得水深AD=80m,于B处测得水深BE=200m,于C处测得水深CF=110m,则∠DEF的余弦值为(  )
A、
16
65
B、
19
65
C、
16
57
D、
17
57

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(
1
2
 x2+2(a-1)x+2在区间(-∞,4]上单调递增,那么实数a的取值范围是(  )
A、a≤-3B、a≥-3
C、a≤5D、a≥5

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,BC=2,AB=4,∠ACB=90°,D为边AB的中点,沿CD把△BCD折起,使平面BCD⊥平面ACD.
(1)求异面直线BC与AD所成角的余弦值.
(2)求平面ABC与平面ABD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=3-
1
3
,b=log2
1
3
,c=log
1
2
1
3
,则(  )
A、a>b>c
B、a>c>b
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:

《中华人民共和国个人所得税》规定,全民全月工资、薪金所得不超过1600元的不必纳税,超过1600元的部分为全月应纳税所得额.此项税款按下表分段累计计算:
全民应纳税所得额税率(%)
不超过500元的部分5
超过500元至2000元的部分10
超过2000元至5000元的部分15
超过5000元至20000元的部分20
超过20000元至40000元的部分25
超过40000元至60000元的部分30
超过60000元至80000元的部分35
超过80000元至100000元的部分40
超过100000元的部分45
某人出版了一书共纳税420元,这个人的稿费为
 
元.

查看答案和解析>>

科目:高中数学 来源: 题型:

设an(n=2,3,4,…)是(2+x)n的展开式中x2项的系数,则
2010
2009
×(
22
a2
+
23
a3
+
24
a4
+…+
22010
a2010
)=(  )
A、8B、4C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(x2-
1
x
9的展开式中的常数项为(  )
A、36B、-36
C、84D、-84

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ab=8,alog2b=4,求a、b的值.

查看答案和解析>>

同步练习册答案