精英家教网 > 高中数学 > 题目详情

已知函数

(1)求函数f(x)的单调区间和极值;

(2)求证:当x>1时,f(x)>g(x);

(3)如果x1≠x2,且f(x1)=f(x2),求证:f(x1)>f(2-x2).

答案:
解析:

  解:(1)∵,∴  (2分)

  令=0,解得

  ∴内是增函数,在内是减函数  (3分)

  ∴当时,取得极大值  (4分)

  (2)证明:,则

    (6分)

  当时,<0,>2,从而<0,

  ∴>0,是增函数.

    (8分)

  (3)证明:∵内是增函数,在内是减函数.

  ∴当,且时,不可能在同一单调区间内.

  不妨设

  由(2)的结论知时,>0,∴

  ∵,∴

  又,∴  (12分)


练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年山东济南外国语高三上学期期中考试理科数学试卷(解析版) 题型:解答题

已知函数.

(1)求函数的最小正周期;

(2)求函数在区间上的函数值的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东济南外国语高三上学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数.

(1)求函数的最小正周期;

(2)求函数在区间上的函数值的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南京市、盐城市高三第一次模拟考试数学(解析版) 题型:解答题

(本小题满分14分)

已知函数.

(1)求函数的最小正周期;

(2)求函数在区间上的函数值的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省常州高级中学高一(上)期中数学试卷(解析版) 题型:解答题

问题1:已知函数,则…+f(9)+f(10)=______.
我们若把每一个函数值计算出,再求和,对函数值个数较少时是常用方法,但函数值个数较多时,运算就较繁锁.观察和式,我们发现、…、可一般表示为=为定值,有此规律从而很方便求和,请求出上述结果,并用此方法求解下面问题:
问题2:已知函数,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中数学 来源:2006-2007学年江苏省常州高级中学高一(上)期中数学试卷(解析版) 题型:解答题

问题1:已知函数,则…+f(9)+f(10)=______.
我们若把每一个函数值计算出,再求和,对函数值个数较少时是常用方法,但函数值个数较多时,运算就较繁锁.观察和式,我们发现、…、可一般表示为=为定值,有此规律从而很方便求和,请求出上述结果,并用此方法求解下面问题:
问题2:已知函数,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

同步练习册答案