精英家教网 > 高中数学 > 题目详情
18.函数f(x)=ln(x2-5x+6)的单调增区间是(3,+∞).

分析 先求函数的定义域设u(x)=x2-5x+6则f(x)=lnu(x),因为对数函数的底数e>1,则对数函数为单调递增函数,要求f(x)函数的增区间只需求二次函数的增区间即可.

解答 解:由题意x2-5x+6>0,可得函数f(x)的定义域是(-∞,2)∪(3,+∞),
令u(x)=x2-5x+6的增区间为(3,+∞),
∵e>1,
∴函数f(x)的单调增区间为(3,+∞),
故答案为:(3,+∞).

点评 此题考查学生求对数函数及二次函数增减性的能力,以及会求复合函数的增减性的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a9+a9=(  )
A.28B.76C.123D.199

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=x3+x2-ax-4在R上无极值点,则实数a的取值范围为(  )
A.$({-∞,-\frac{1}{3}})$B.$[{-\frac{1}{3},+∞})$C.$({-\frac{1}{3},+∞})$D.$({-∞,-\frac{1}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx+$\frac{a}{x-1}$(a为常数),若函数y=f(x)在(e,+∞)内有极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定义在(0,+∞)上的函数f(x)=2x+$\frac{10}{x}$.设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设P(x0,y0),M(t,2t),试用x0表示t,并求出线段OM的长(结果用含x0的式子表示);
(3)设点O为坐标原点,求四边形OMPN面积的最小值.
(提示:当x>0,k>0时,恒有x+$\frac{k}{x}≥2\sqrt{k}$(当且仅当x=$\sqrt{k}$时,等号成立)).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读如图的程序框图,运行相应的程序,则输出的S的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点M(1,1)作斜率为-$\frac{1}{4}$的直线与椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),相交于A、B两点,若M是线段AB的中点,则椭圆C的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.《九章算术》中,将底面是直角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的表面积为(  )
A.4+2$\sqrt{2}$B.2C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{3}}{2}$,点A(0,-2)与椭圆右焦点F的连线的斜率为$\frac{2\sqrt{3}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)O为坐标原点,过点A的直线l与椭圆C相交于P、Q两点,当△OPQ的面积最大时,求直线l的方程.

查看答案和解析>>

同步练习册答案