精英家教网 > 高中数学 > 题目详情
已知直线l1:ax-by+k=0;l2:kx-y-1=0,其中a是常数,a≠0.
(1)求直线l1和l2交点的轨迹,说明轨迹是什么曲线,若是二次曲线,试求出焦点坐标和离心率.
(2)当a>0,y≥1时,轨迹上的点P(x,y)到点A(0,b)距离的最小值是否存在?若存在,求出这个最小值.
分析:(1)联立直线l1和l2的方程,消去参数即可得到交点的轨迹方程,根据a的取值a>0,-1<a<0,a=-1,a<-1说明轨迹曲线,利用二次曲线判断形状,直接求出焦点坐标和离心率.
(2)通过a>0,y≥1时,说明轨迹的图形,求出轨迹上的点P(x,y)到点A(0,b)距离的表达式,通过配方讨论b与
a+1
a
的大小,求出|PA|的最小值.
解答:解:(1)由
ax-by+k=0
kx-y-1=0

消去k,得y2-ax2=1
①当a>0时,轨迹是双曲线,焦点为(0,±
1+
1
a
)
,离心率e=
1+
1
a

②当-1<a<0时,轨迹是椭圆,焦点为
-1-
1
a
,0)
,离心率e=
1+a

③当a=-1时,轨迹是圆,圆心为(0,0),半径为1;
④当a<-1时,轨迹是椭圆,焦点为(0,±
1+
1
a
)
,离心率e=
1+
1
a

(2)当a>0时,y≥1时,轨迹是双曲线y2-ax2=1的上半支.
∵|PA|2=x2+(y-b)2=
y2-1
a
+y2-2by+b2

=
a+1
a
(y-
ab
a+1
)2+
ab2-a-1
a(a+1)

①当b>
a+1
a
时,|PA|的最小值为
ab2-a-1
a(a+1)

②当 b≤
a+1
a
时,|PA|的最小值为|1-b|
点评:本题考查知识点比较多,涉及参数方程,双曲线方程椭圆方程,圆的方程,两点的距离公式等等,涉及分类讨论思想二次函数的最值,是难度比较大,容易出错的题目,考试常靠题型,多以压轴题为主.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,l1⊥l2,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①若命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧?q”是假命题.
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是
a
b
=-3.
③命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”.
④任意的锐角三角形ABC中,有sinA>cosB成立;
⑤直线x=
π
12
是函数y=2sin(2x-
π
6
)
的图象的一条对称轴
其中正确结论的序号为
 
.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax+3y+1=0,l2:x+(a-2)y+a=0.当l1∥l2时,实数a的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax-y+1=0与l2:x+ay+1=0(a∈R),给出如下结论:
①不论a为何值时,l1与l2都互相垂直;
②不论a为何值时,l1与l2都关于直线x+y=0对称;
③当a变化时,l1与l2分别经过定点A(0,1)和B(-1,0);
④当a变化时,l1与l2的交点轨迹是以AB为直径的圆(除去原点).
其中正确的结论有
①③④
①③④
.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)给出下列四个结论:
①命题''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,则a<b”的逆命题为真;
③已知直线l1:ax+2y-1=0,l1:x+by+2=0,则l1⊥l2的充要条件是
ab
=-2

④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f'(x)>0,g'(x)>0,则x<0时,f'(x)>g'(x).
其中正确结论的序号是
①④
①④
(填上所有正确结论的序号)

查看答案和解析>>

同步练习册答案