精英家教网 > 高中数学 > 题目详情

【题目】一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为 ,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.

【答案】
(1)解:X可能取值有﹣200,10,20,100.

则P(X=﹣200)=

P(X=10)= =

P(X=20)= =

P(X=100)= =

故分布列为:

X

﹣200

10

20

100

P

由(1)知,每盘游戏出现音乐的概率是p= + =


(2)解:则至少有一盘出现音乐的概率p=1﹣
(3)解:由(1)知,每盘游戏获得的分数为X的数学期望是E(X)=(﹣200)× +10× +20× ×100=﹣ =

这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.


【解析】(1)设每盘游戏获得的分数为X,求出对应的概率,即可求X的分布列;(2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论.(3)计算出随机变量的期望,根据统计与概率的知识进行分析即可.
【考点精析】本题主要考查了离散型随机变量及其分布列的相关知识点,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位建立坐标系.已知直线的极坐标方程为,曲线的参数方程为为参数).

(1)求曲线的普通方程和直线的直角坐标方程;

(2)直线上有一点设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.

(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值;
(3)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①存在实数,使; ②函数是偶函数;

③若是第一象限的角,且,则

④直线是函数的一条对称轴;

⑤函数的图像关于点成对称中心图形.

其中正确命题的序号是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(3x+ ).
(1)求f(x)的单调递增区间;
(2)若α是第二象限角,f( )= cos(α+ )cos2α,求cosα﹣sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两个旅游景点之间有一条5km的直线型水路,一艘游轮以的速度航行时考虑到航线安全要求,每小时使用的燃料费用为万元为常数,且,其他费用为每小时万元.

若游轮以的速度航行时,每小时使用的燃料费用为万元,要使每小时的所有费用不超过万元,求x的取值范围;

求该游轮单程航行所需总费用的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P1(a1 , b1)与P2(a2 , b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组 的解的情况是(
A.无论k,P1 , P2如何,总是无解
B.无论k,P1 , P2如何,总有唯一解
C.存在k,P1 , P2 , 使之恰有两解
D.存在k,P1 , P2 , 使之有无穷多解

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设

为整数,若除得的余数相同,则称对模同余,记为,则的值可以是

A. 2015 B. 2016 C. 2017 D. 2018

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是圆上任意一点,线段的垂直平分线交于点,当点在圆上运动时,点的轨迹为曲线

(1)求曲线的方程;

(2)若直线与曲线相交于两点,为坐标原点,求面积的最大值.

查看答案和解析>>

同步练习册答案