(1)求证:数列{an+1-an}(n∈N*)是等比数列;
(2)记bn=anln|an|(n∈N*),当t=时,数列{bn}中是否存在最大项.若存在,是第几项?若不存在,请说明理由.
(文)已知等比数列{xn}各项均为不等于1的正数,数列{yn}满足=2(a>0且a≠1),设y3=18,y6=12.
(1)求证:数列{yn}是等差数列;
(2)若存在自然数M,使得n>M时,xn>1恒成立,求M的最小值.
答案:(理)(1)证明:当x=t时,函数f(x)=(an-an-1)x2-(an+1-an)x(n≥2)取得极值,
∴t=,即数列{an+1-an}(n∈N*)是等比数列.
(2)解:由(1)知a2-a1=t2-t,∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(tn-tn-1)+(tn-1-tn-2)+…+(t2-t)+t=tn.
∴bn=tnln|tn|=ntnln|t|.
∵t=,∴bn=n()n·ln.∴b2k<0,b2k+1>0(k∈N*).
假设b2k+1是数列{bn}中的最大项,则
即≤k≤.
又∵k∈N*,∴k=2,则b5最大.
(文)(1)证明:∵yn=2logaxn,∴yn-yn-1=2logaxn-2logaxn-1=2loga.
又∵数列{xn}为等比数列,∴2loga为定值.∴{yn}为等差数列.
(2)解:由(1)可得yn=-2n+24,则xn=a-n+12,当a>1时,a-n+12>a0,则n<12,
∴不存在M∈N*,使得n>M时,xn>1恒成立;
当0<a<1时,a-n+12>a0,则n>12.
∴取M=13,当n>M时xn>1恒成立.∴Mmin=13.
科目:高中数学 来源: 题型:
A.nan<Sn<na1 B.Sn<nan<na1 C.nan>Sn>na1 D.Sn>na1>nan
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)判断{}是否为等差数列?并证明你的结论;
(2)求Sn和an;
(3)求证:S12+S22+…+Sn2≤.
(文)数列{an}的前n项和Sn(n∈N*),点(an,Sn)在直线y=2x-3n上.
(1)求证:数列{an+3}是等比数列;
(2)求数列{an}的通项公式;
(3)数列{an}中是否存在成等差数列的三项?若存在,求出一组适合条件的三项;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)若a1=0,求a2、a3的值;
(2)求证:a1=0是数列{an}为等差数列的充要条件.
(文)如图,直线l:y=(x-2)和双曲线C:=1(a>0,b>0)交于A、B两点,且|AB|=,又l关于直线l1:y=x对称的直线l2与x轴平行.
(1)求双曲线C的离心率;
(2)求双曲线C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且bn=,求证:对任意正整数n,总有Tn<2;
(3)在正数数列{cn}中,设(cn)n+1=an+1(n∈N*),求数列{lncn}中的最大项.
(文)已知数列{xn}满足xn+1-xn=()n,n∈N*,且x1=1.设an=xn,且T2n=a1+2a2+3a3+…+ (2n-1)a2n-1+2na2n.
(1)求xn的表达式;
(2)求T2n;
(3)若Qn=1(n∈N*),试比较9T2n与Qn的大小,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com