精英家教网 > 高中数学 > 题目详情
(理)已知数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,满足关系Sn=2an-2.

(1)求数列{an}的通项公式;

(2)设数列{bn}的前n项和为Tn,且bn=,求证:对任意正整数n,总有Tn<2;

(3)在正数数列{cn}中,设(cn)n+1=an+1(n∈N*),求数列{lncn}中的最大项.

(文)已知数列{xn}满足xn+1-xn=()n,n∈N*,且x1=1.设an=xn,且T2n=a1+2a2+3a3+…+ (2n-1)a2n-1+2na2n.

(1)求xn的表达式;

(2)求T2n;

(3)若Qn=1(n∈N*),试比较9T2n与Qn的大小,并说明理由.

(理)(1)解:∵Sn=2an-2(n∈N*),                                               ①

∴Sn-1=2an-1-2(n≥2,n∈N*).                                               ② 

①-②,得an=2an-2an-1(n≥2,n∈N*).

∵an≠0,∴=2(n≥2,n∈N*),

即数列{an}是等比数列.                                                      

∵a1=S1,

∴a1=2a1-2,即a1=2.

∴an=2n(n∈N*).                                                          

(2)证明:∵对任意正整数n,总有bn=,                         

∴Tn=

=1+1<2.                                 

(3)解:由(cn)n+1=an+1(n∈N*),知lncn=.

令f(x)=,则f′(x)=.

∵在区间(0,e)上,f′(x)>0,在区间(e,+∞)上,f′(x)<0,

∴在区间(e,+∞)上f(x)为单调递减函数.                                         

∴n≥2且n∈N*时,{lncn}是递减数列.

又lnc1<lnc2,∴数列{lncn}中的最大项为lnc2=ln3.                             

(文)解:(1)∵xn+1-xn=()n,

∴xn=x1+(x2-x1)+(x3-x2)+…+(xn-xn-1)

=1+()+()2+…+()n-1

=

=.                                                          

当n=1时上式也成立,

∴xn=(n∈N*).                                                

(2)an=.

∵T2n=a1+2a2+3a3+…+(2n-1)a2n-1+2na2n

=()2+2()3+3()4+…+(2n-1)()2n+2n()2n+1,                        ①

T2n=()3+2()4+3()5+…+(2n-1)()2n+1+2n()2n+2.              ②

①-②,得T2n=()2+()3+…+()2n+1-2n()2n+2.                       

T2n=-2n()2n+2

=.

∴T2n=.                             

(3)由(2)可得9T2n=.

又Qn=,

当n=1时,22n=4,(2n+1)2=9,∴9T2n<Qn;                                        

当n=2时,22n=16,(2n+1)2=25,∴9T2n<Qn;                                      

当n≥3时,22n=[(1+1)n2=()2>(2n+1)2,

∴9T2n>Qn.

综上所述,当n=1,2时,9T2n<Qn;当n≥3时,9T2n>Qn.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知数列{an}的前n项和Sn=3n-n2(n∈N*),则当n>2时有(    )

A.nan<Sn<na1        B.Sn<nan<na1        C.nan>Sn>na1       D.Sn>na1>nan

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}的前n项和为Sn,且满足a1=,an+2SnSn-1=0(n≥2),

(1)判断{}是否为等差数列?并证明你的结论;

(2)求Sn和an;

(3)求证:S12+S22+…+Sn2.

(文)数列{an}的前n项和Sn(n∈N*),点(an,Sn)在直线y=2x-3n上.

(1)求证:数列{an+3}是等比数列;

(2)求数列{an}的通项公式;

(3)数列{an}中是否存在成等差数列的三项?若存在,求出一组适合条件的三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}的前n项之和Sn与an满足关系式:nSn+1=(n+2)Sn+an+2(n∈N+).

(1)若a1=0,求a2、a3的值;

(2)求证:a1=0是数列{an}为等差数列的充要条件.

(文)如图,直线l:y=(x-2)和双曲线C:=1(a>0,b>0)交于A、B两点,且|AB|=,又l关于直线l1:y=x对称的直线l2与x轴平行.

(1)求双曲线C的离心率;

(2)求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}中,a1=t(t≠0且t≠1),a2=t2,当x=t时,函数f(x)=(an-an-1)x2-(an+1-an)x(n≥2)取得极值.

(1)求证:数列{an+1-an}(n∈N*)是等比数列;

(2)记bn=anln|an|(n∈N*),当t=时,数列{bn}中是否存在最大项.若存在,是第几项?若不存在,请说明理由.

(文)已知等比数列{xn}各项均为不等于1的正数,数列{yn}满足=2(a>0且a≠1),设y3=18,y6=12.

(1)求证:数列{yn}是等差数列;

(2)若存在自然数M,使得n>M时,xn>1恒成立,求M的最小值.

查看答案和解析>>

同步练习册答案