![]()
图2
活动:本例给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A,B,C三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a、b变化过程中,A、B、C三点始终在同一条直线上的规律.
![]()
图3
解:如图3,分别作向量
、
、
,过点A、C作直线AC.观察发现,不论向量a、b怎样变化,点B始终在直线AC上,猜想A、B、C三点共线.
事实上,因为
=
-
=a+2b-(a+b)=b,
而
=
-
=a+3b-(a+b)=2b,
于是
=2
.
所以A、B、C三点共线.
点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的独特新颖.
科目:高中数学 来源: 题型:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| π |
| 2 |
| π |
| 2 |
| 1 |
| 3 |
| 7 |
| 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| 4 |
| OP |
| OA |
| OB |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com