精英家教网 > 高中数学 > 题目详情

已知矩形的两相顶点位于轴上,另两个顶点位于抛物线轴上方的部分,求面积最大时的矩形的边长。

当矩形的边长分别为时,面积最大


解析:

由题意可设,则,其中,设矩形的面积为,则,令,得,又当时,,当时,,故当时,,此时,所以当矩形的边长分别为时,面积最大。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,则矩形的面积最大为
32
3
9
32
3
9

查看答案和解析>>

科目:高中数学 来源:2012年苏教版高中数学选修1-1 3.4导数在实际生活中的应用练习卷(解析版) 题型:填空题

已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y =4-x2在x轴上方的曲线上,则这种矩形中面积最大者的边长为           

 

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高数选修1-1 3.4生活中的优化问题举例练习卷(解析版) 题型:填空题

已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y =4-x2在x轴上方的曲线上,则这种矩形中面积最大者的边长为           

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛二中高二(下)期中数学试卷(理科)(解析版) 题型:填空题

已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,则矩形的面积最大为   

查看答案和解析>>

同步练习册答案