精英家教网 > 高中数学 > 题目详情

正方体ABCD-A1B1C1D1的棱长为1,若E、F分别是BC、DD1的中点,则B1到平面ABF的距离为________.


分析:本题采用的是“找垂面法”:即找(作)出一个过该点的平面与已知平面垂直,然后过该点作其交线的垂线,则得点到平面的垂线段.观察点的位置可知:A1B1∥平面ABF,得到B1到平面ABF的距离即为A1到平面ABF的距离,再转化为A1到平面ABF的距离即为A1到直线AF的距离d,最后在△A1AF中利用等面积法即可求出d的长度.
解答:解:如图所示,
A1B1∥平面ABF,∴B1到平面ABF的距离即为A1到平面ABF的距离.
∵平面AA1D1D⊥平面ABF,平面AA1D1D∩平面ABF=AF,
∴A1到平面ABF的距离即为A1到直线AF的距离d.
在△A1AF中,A1A=1,AF=,A1F=
∴d==,即B1到平面ABF的距离为
故答案为:
点评:本小题主要考查棱柱,线面关系、点到平面的距离等基本知识,同时考查空间想象能力和推理、运算能力.在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多面体的体积也常转化为求点到平面的距离.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案