精英家教网 > 高中数学 > 题目详情

如图,垂直于矩形所在平面,

(1)求证:
(2)若矩形的一个边,,则另一边的长为何值时,三棱锥的体积为

(1)证明详见解析;(2)当时,三棱锥的体积为.

解析试题分析:(1)要证,只须在平面内找一条直线与平行,过点的平行线交于点,连接就是所要找的直线,这时只须充分利用题中的平行条件即可证明,从而问题得证;(2)由(1)的证明过程得到,在中,先利用确定,进一步算出,从而就确定了三棱锥的底面积,由题中的垂直条件易得平面,再由所给的体积及三棱锥的体积计算公式可求出的长度,问题得以解决.
试题解析:(1)过点的平行线交于点,连接,则
四边形是平行四边形
,又

四边形也是平行四边形
平面
                    6分
(2)由(1)可知

中,,得
可得,从而得
因为,所以平面
,而
所以
综上,当时,三棱锥的体积为          12分.
考点:1.空间中的平行关系;2.三棱锥的体积计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四边形PCBM是直角梯形,.又,直线与直线所成的角为60°.
(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.
(1)求证:平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中, ,  的中点,△是等腰三角形,的中点,上一点.

(1)若∥平面,求
(2)平面将三棱柱分成两个部分,求较小部分与较大部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,D、E分别是AB、BB1的中点.
 
(1)证明:BC1//平面A1CD;
(2)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,平面底面的中点,是棱的中点,.

(1)求证:平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形中,.把沿折起到的位置,使得点在平面上的正投影恰好落在线段上,如图2所示,点分别为棱的中点.

(1)求证:平面平面
(2)求证:平面
(3)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,是边长为6的等边三角形,分别为靠近的三等分点,点为边边的中点,线段交线段于点.将沿翻折,使平面平面,连接,形成如图乙所示的几何体.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图(1)所示,⊙O的直径AB=4,点C,D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图(2)所示).
 
(1)求证:OF∥平面ACD;
(2)在上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求点G到平面ACD的距离;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案