精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|y=2x+1},B={y|y=x2+x+1,x∈R},则A∩B=(
A.{(0,1)∪(1,3)}
B.R
C.(0,+∞)
D.[ ,+∞)

【答案】D
【解析】解:∵集合A={x|y=2x+1},可得x∈R,
∴A={x|x∈R},
∵B={y|y=x2+x+1,x∈R},y=x2+x+1=(x﹣ 2+
∴B={y|y≥ },
∴A∩B={x|x≥ },
故选D;
【考点精析】关于本题考查的集合的交集运算和二次函数的性质,需要了解交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.

(1)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;

2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求的值;

(3)在满足(2)的条件下,估计1月份该市居民用户平均用电费用(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, ,平面底面 的中点, 是棱上的点,

(Ⅰ)求证:平面平面

(Ⅱ)若二面角大小为,设,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知点为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为非负整数的数列同时满足下列条件:

;② ;③的因数().

(Ⅰ)当时,写出数列的前五项;

(Ⅱ)若数列的前三项互不相等,且时, 为常数,求的值;

(Ⅲ)求证:对任意正整数,存在正整数,使得时, 为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,已知对任意都成立,数列的前项和为.(这里均为实数)

(1)若是等差数列,求的值;

(2)若,求

(3)是否存在实数,使数列是公比不为的等比数列,且任意相邻三项按某顺序排列后成等差数列?若存在,求出所有的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),其准线方程为,直线过点)且与抛物线交于两点, 为坐标原点.

(1)求抛物线方程,并证明:的值与直线倾斜角的大小无关;

(2)若为抛物线上的动点,记的最小值为函数,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①f(x)=x3﹣3x2是增函数,无极值.
②f(x)=x3﹣3x2在(﹣∞,2)上没有最大值
③由曲线y=x,y=x2所围成图形的面积是
④函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是(﹣∞,2)
其中正确命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式exf(x)>ex+3(其中e为自然对数的底数)的解集为(
A.(0,+∞)
B.(﹣∞,0)∪(3,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(3,+∞)

查看答案和解析>>

同步练习册答案