精英家教网 > 高中数学 > 题目详情

不等式x+y+3>0表示直线x+y+3=0

[  ]

A.下方的平面区域(不包括直线)

B.上方的平面区域(不包括直线)

C.下方的平面区域(包括直线)

D.上方的平面区域(包括直线)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

实数x,y满足不等式
x≥0
x-y≥0
2x-y-2≤0
,则ω=
y-1
x+1
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科做)
阅读下面题目的解法,再根据要求解决后面的问题.
阅读题目:对于任意实数a1,a2,b1,b2,证明不等式(a1b1+a2b22≤(a12+a22)(b12+b22).
证明:构造函数f(x)=(a1x+b12+(a2x+b22=(a12+a22)x2+2(a1b1+a2b2)x+(b12+b22).
注意到f(x)≥0,所以△=[2(a1b1+a2b2)]2-4(a12+a22)(b12+b22)≤0,
即(a1b1+a2b22≤(a12+a22)(b12+b22).
(其中等号成立当且仅当a1x+b1=a2x+b2=0,即a1b2=a2b1.)
问题:(1)请用这个不等式证明:对任意正实数a,b,x,y,不等式
a2
x
+
b2
y
(a+b)2
x+y
成立.
(2)用(1)中的不等式求函数y=
2
x
+
9
1-2x
(0<x<
1
2
)
的最小值,并指出此时x的值.
(3)根据阅读题目的证明,将不等式(a1b1+a2b22≤(a12+a22)(b12+b22)进行推广,得到一个更一般的不等式,并用构造函数的方法对你的推广进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)证明不等式:若x,y>0,则(x+y)(
1
x
+
1
y
)≥4

(2)探索猜想下列不等式,并将结果填在括号内:若x,y,z>0,则(x+y+z)(
1
x
+
1
y
+
1
z
)≥
9
9

(3)试由(1)(2)归纳出更一般的结论:
若x1,x2,…,xn>0,则(x1+x2+…+xn)(
1
x1
+
1
x2
+…+
1
xn
)≥n2
若x1,x2,…,xn>0,则(x1+x2+…+xn)(
1
x1
+
1
x2
+…+
1
xn
)≥n2

查看答案和解析>>

科目:高中数学 来源:中学教材标准学案 数学 高二上册 题型:013

不等式(x-2y+1)(x+y-3)>0表示的平面区域是

[  ]

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案