精英家教网 > 高中数学 > 题目详情
(1)证明不等式:若x,y>0,则(x+y)(
1
x
+
1
y
)≥4

(2)探索猜想下列不等式,并将结果填在括号内:若x,y,z>0,则(x+y+z)(
1
x
+
1
y
+
1
z
)≥
9
9

(3)试由(1)(2)归纳出更一般的结论:
若x1,x2,…,xn>0,则(x1+x2+…+xn)(
1
x1
+
1
x2
+…+
1
xn
)≥n2
若x1,x2,…,xn>0,则(x1+x2+…+xn)(
1
x1
+
1
x2
+…+
1
xn
)≥n2
分析:(1)先将左边展开(x+y)(
1
x
+
1
y
)=2+
x
y
+
y
x
,再利用基本不等式即可证得;
(2)先将左边展开(x+y+z)(
1
x
+
1
y
+
1
z
)=3+
x
y
+
y
x
+
z
x
+
x
z
+
z
y
+
y
z
,再利用基本不等式即可证得;
(3)类比(1)(2)可得结论若x1,x2,…,xn>0,则(x1+x2+…+xn)(
1
x1
+
1
x2
+…+
1
xn
)≥n2
解答:解:(1)证明:(x+y)(
1
x
+
1
y
)=2+
x
y
+
y
x
≥4

当且仅当
x
y
=
y
x
即x=y时,等号成立
(2)(x+y+z)(
1
x
+
1
y
+
1
z
)=3+
x
y
+
y
x
+
z
x
+
x
z
+
z
y
+
y
z
≥9
,当且仅当x=y=z时,等号成立
(3)由(1)(2)归纳推广出更一般的结论:
若x1,x2,…,xn>0,则(x1+x2+…+xn)(
1
x1
+
1
x2
+…+
1
xn
)≥n2
点评:本题以证明不等式为素材,考查学生分析解决问题的能力,考查基本不等式的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3-2mx2-m2x+1-m(其中m>-2)在点x=1处取得极值.
(1)求实数m的值;
(2)求函数f(x)在区间[0,1]上的最小值;
(3)若a≥0,b≥0,c≥0,且a+b+c=1,证明不等式
a
1+a2
+
b
1+b2
+
c
1+c2
9
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)(理)(1)证明不等式:ln(1+x)<
x
1+x
(x>0).
(2)已知函数f(x)=ln(1+x)-
ax
a+x
在(0,+∞)上单调递增,求实数a的取值范围.
(3)若关于x的不等式
x
1+bx
+
1
ex
≥1在[0,+∞)上恒成立,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=
0   当i∉AJ
1        当i∈AJ时  

(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:
5cmn
-
cmcn
>1对任何正整数m,n都成立.(第1小题用表)
1 2 3 4 5 6 7
1 0
2 0
3 0
4 0
5 0
6 0
7 0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n∈R,f(x)=x2-mnx.
(1)当n=1时,
①解关于x的不等式f(x)>2m2
②若关于x的不等式f(x)+4>0在x∈[1,3]上有解,求m的取值范围;
(2)若m>0,n>0,且m+n=1,证明不等式f(
1
m
)+f(
1
n
)≥7

查看答案和解析>>

同步练习册答案