精英家教网 > 高中数学 > 题目详情
(2012•黄州区模拟)(理)(1)证明不等式:ln(1+x)<
x
1+x
(x>0).
(2)已知函数f(x)=ln(1+x)-
ax
a+x
在(0,+∞)上单调递增,求实数a的取值范围.
(3)若关于x的不等式
x
1+bx
+
1
ex
≥1在[0,+∞)上恒成立,求实数b的最大值.
分析:(1)令h(x)=ln(1+x)-
x
1+x
,证明h(x)在(0,+∞)上单调递减,即h(x)<h(0),从而可得结论;
(2)求导函数,令f′(x)=0,可得x=0或x=a2-2a,根据函数f(x)=ln(1+x)-
ax
a+x
在(0,+∞)上单调递增,可得f′(x)≥0在(0,+∞)上恒成立,从而可求实数a的取值范围;
(3)关于x的不等式
x
1+bx
+
1
ex
≥1在[0,+∞)上恒成立,等价于
x
1+bx
≥1-
1
ex
在[0,+∞)上恒成立,当x>0时,b≤1+
1
ex-1
-
1
x
,构造函数g(x)=1+
1
ex-1
-
1
x
,利用ln(1+x)<
x
1+x
(x>0),可得g(x)在(0,+∞)上单调增,从而可求实数b的最大值.
解答:(1)证明:(1)令h(x)=ln(1+x)-
x
1+x
,则h′(x)=
1-
1+x+
1
4
x2
1+x
1+x
<0

∴h(x)在(0,+∞)上单调递减,即h(x)<h(0)=0
∴ln(1+x)-
x
1+x
<0
∴ln(1+x)<
x
1+x
(x>0).
(2)解:求导函数,可得f′(x)=
x[x-(a2-2a)]
(x+1)(x+a)2
,令f′(x)=0,可得x=0或x=a2-2a,
∵函数f(x)=ln(1+x)-
ax
a+x
在(0,+∞)上单调递增
∴f′(x)≥0在(0,+∞)上恒成立
∴a2-2a≤0
∵f(x)在(0,+∞)上有意义
∴a≥0
∴0≤a≤2;
(3)解:关于x的不等式
x
1+bx
+
1
ex
≥1在[0,+∞)上恒成立,等价于
x
1+bx
≥1-
1
ex
在[0,+∞)上恒成立,
1-
1
ex
0,∴b≥0
当x>0时,b≤1+
1
ex-1
-
1
x

构造函数g(x)=1+
1
ex-1
-
1
x
,则g′(x)=-
ex
(ex-1)2
+
1
x2

由(1)知,ln(1+x)<
x
1+x
(x>0).
以ex代1+x,可得x<
ex-1
ex

∵x>0,∴-
ex
(ex-1)2
+
1
x2
>0,
∴g′(x)>0,
∴g(x)在(0,+∞)上单调增
当x>0且x→0时,g(x)→1
∴b≤1
∴实数b的最大值为1
点评:本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查函数的构造,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),设函数f(x)=
m
n
+1.
(1)若x∈[0,
π
2
],f(x)=
11
10
,求cosx的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c-
3
a,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知某几何体的三视图如图,则该几何体的表面积为
3+
2
+
3
3+
2
+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知函数f(x)=
|log
x
4
-1|-2,|x|≤1
1
1+x
1
3
,|x|>1
,则f(f(27))=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)如图是二次函数f(x)=x2-bx+a的部分图象,则函数g(x)=2lnx+f(x)在点(b,g(b))处切线的斜率的最小值是(  )

查看答案和解析>>

同步练习册答案