精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x3-2mx2-m2x+1-m(其中m>-2)在点x=1处取得极值.
(1)求实数m的值;
(2)求函数f(x)在区间[0,1]上的最小值;
(3)若a≥0,b≥0,c≥0,且a+b+c=1,证明不等式
a
1+a2
+
b
1+b2
+
c
1+c2
9
10
分析:(1)由题可得f'(x)=-3x2-4mx-m2则f'(1)=0,即m2+4m+3=0所以m=-3或m=-1.
(2)由(1)得f'(x)=-3x2+4x-1,令f'(x)≥0,得f(x)在[0,1]上的增区间为[
1
3
,1]
,减区间为[0,
1
3
]
,进而得到函数的最值
50
27

(3)由(2)得(1+x2)(2-x)≥
50
27
即整理得
x
1+x2
27
50
(2x-x2)
可得
a
1+a2
+
b
1+b2
+
c
1+c2
27
50
(2a-a2+2b-b2+2c-c2)=
27
50
[2-(a2+b2+c2)]
解答:解:(1)由题可得f'(x)=-3x2-4mx-m2
则f'(1)=0,即m2+4m+3=0所以m=-3或m=-1,又m>-2,故m=-1
(2)由(1)知,f(x)=-x3+2x2-x+2,则f'(x)=-3x2+4x-1
令f'(x)≥0,得f(x)在[0,1]上的增区间为[
1
3
,1]
,减区间为[0,
1
3
]

所以f(x)min=f(
1
3
)=
50
27

(3)因f(x)=-x3+2x2-x+2=(1+x2)(2-x),x∈[0,1]
所以(1+x2)(2-x)≥
50
27
,即
1
1+x2
27
50
(2-x)

所以
x
1+x2
27
50
(2x-x2)

a
1+a2
+
b
1+b2
+
c
1+c2
27
50
(2a-a2+2b-b2+2c-c2)=
27
50
[2-(a2+b2+c2)
]
又1=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)≤3(a2+b2+c2
所以a2+b2+c2
1
3

所以
a
1+a2
+
b
1+b2
+
c
1+c2
27
50
×(2-
1
3
)=
9
10
(当且仅当a=b=c=
1
3
时取”=”)
点评:本题考查利用导数研究函数的极值与最值,还考查了利用函数的最值证明不等式恒成立的知识点,导数与不等式相结合是高考考查的热点,多以解答题的形式出现属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案