精英家教网 > 高中数学 > 题目详情
5.已知角α的终边在如图所示的阴影区域内.
(1)用弧度制表示角α的集合;
(2)判定$\frac{α}{2}$+$\frac{7π}{12}$是第几象限角.

分析 (1)根据阴影,可用弧度制表示角α的集合;
(2)$\frac{π}{2}$+kπ<$\frac{α}{2}$+$\frac{7π}{12}$<$\frac{3π}{4}$+kπ,对k可得判定$\frac{α}{2}$+$\frac{7π}{12}$是第几象限角.

解答 解:(1)由题意,{α|-$\frac{π}{6}$+2kπ<α<$\frac{π}{3}$+2kπ,k∈Z};
(2)∵-$\frac{π}{6}$+2kπ<α<$\frac{π}{3}$+2kπ,
∴$\frac{π}{2}$+kπ<$\frac{α}{2}$+$\frac{7π}{12}$<$\frac{3π}{4}$+kπ,
k=2n,n∈Z,$\frac{α}{2}$+$\frac{7π}{12}$是第二象限角;k=2n+1,n∈Z,$\frac{α}{2}$+$\frac{7π}{12}$是第四象限角.

点评 本题考查象限角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{4}x,x>0}\end{array}\right.$,则f[f(-2)]=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.以下命题中:
①p∨q为真命题,则p与q均为真命题;
②${∫}_{0}^{\frac{π}{2}}$sin2$\frac{x}{2}$dx=$\frac{π}{4}$-$\frac{1}{2}$;
③(a+b+c)9展开式中a4b3c2的系数为1260;
④已知函数f(x)=-x-x3.x1,x2,x3∈R.且x1+x2>0,x2+x3>0,x3+x1>0.则f(x1)+f(x2)+f(x3)的值恒为负;
⑤“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0“的充分条件.
其中是真命题的是②③④⑤(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.空间中四点可确定的平面有(  )
A.1个B.3个
C.4个D.1个或4个或无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知sinα=-$\frac{3}{5}$,α∈($\frac{3}{2}π,2π$),则tanα等于(  )
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若$α∈(\frac{π}{2},π)$,且sinα=$\frac{3}{5}$,则cosα=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}的首项为1,前n项和为Sn,且Sn+1=n2+an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=an•2${\;}^{{a}_{n}}$,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求与直线x=-2和圆A:(x-3)2+y2=1都相切的动圆圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,则b-a的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案